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A MATHEMATICAL THEORY OF QUANTUM
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1. Introduction

Topological o models, proposed by Witten [25], have become increas-
ingly important in string theory and many of its important applications
like quantum cohomology and mirror symmetry. But Witten proposed
it based on physical intuition. Until recently, its rigorous mathematical
foundation remained to be established. The first step was taken by the
first author in [19], where he established the mathematical definition
of topological o model invariant, k-point correlation function, for ra-
tional curves. One of the main features in [19] is, predicted by Witten,
the use of symplectic topology, in particular, of pseudo-holomorphic
curves. As Witten pointed out [25], the topological o model isa 1+ 1
topological field theory. A key topological field theory axiom is the
composition law. In this paper, we will first define a mized invariant
for arbitrary genus, which combines the topological o-model invariant
with the Gromov invariant. Such a mixed invariant is natural in con-
sidering the composition law of the Gromov invariant. The main part
of this paper is to give a mathematical proof of the composition law of
our mixed invariant, which includes the topological ¢ model invariant.
There are many applications of this composition law. The obvious one
is to compute any k-point correlation function in terms of 3-point func-
tions. In this paper, we will give three other important applications.
The first application is a mathematical proof of the existence of quan-
tum ring structures on cohomology groups of semi-positive symplectic
manifolds. The existence of quantum ring structures was first sug-
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gested by the physicist C. Vafa in a different way. Our approach here
follows a suggestion of Witten [25]. We will also compute the quantum
ring structures for some Kéahler manifolds using the composition law
we proved. In [23], one can find more examples of applying the theory
here to compute the quantum ring structure. The second application
is to the mirror symmetry conjecture for algebraic manifolds. The last
application is to compute the enumerative geometric invariants such
as the degree of the moduli space of rational curves in CP™ of fixed
degree. This is a classical and difficult problem in enumerative alge-
braic geometry. We compute them in terms of recursion formulas. In
fact, our method also yields recursion formulas for the Gromov invari-
ants of more general Fano manifolds of Picard number 1, for examples,
hypersurfaces or complete intersections. But it seems to be difficult
to determine if the Gromov invariants are enumerative invariants. We
believe that this is the case if the degree of rational curves is suffi-
ciently large. The Gromov invariants for rational curves are indeed
enumerative invariants in case of complex projective spaces, complex
Grassmannian manifolds (cf. Lemma 10.1), Del-Pezzo surfaces.

Let us first sketch how to define the mixed invariant using pseudo-
holomorphic curves. Its definition is analogous to the definition of the
Donaldson polynomial invariants. We refer the readers to section 2 for
details. Let (%, 7) be a Riemann surface with a fixed complex structure
7. Let (V,w) be a semi-positive symplectic manifold, and A € Hy(V, Z)
with C;(V)(A) > 0. Choose a generic almost complex structure J on
V, tamed by w. Let v be an inhomogeneous term defined to be an
anti-J-linear section of Hom(#}TE, 73TV) on ¥ x V, where ; is the
projection from ¥ x V to its i-th factor. A (J,v)-perturbed holomorphic
map, or simply, a (J,v)-map, is a smooth map f : ¥ — V satisfying
(05 f)(z) = v(z, f(z)). The last equation is an inhomogeneous Cauchy-
Riemann equation. The mixed invariant is defined as follows:

Fix a set of marked points (z1, - ,zx) € & (k + 29 > 3), where g is
the genus of 2. Let a3, -+ ,a, b1, - , [; be integral homology classes
in H,(V, Z) satisfying:

k !
> (2n —degay) + > (2n — 2 — deg B;) = 2C1(V)(4) + 2n(1 - g),
i=1 j=1
where g is the genus of ¥. Every integral homology class can be repre-
sented by a so called pseudo-manifold. A pseudo-manifold is a singular
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space P together with a map F : P — V such that the singularity of
P is of codimension 2. Every two such pseudo-manifolds representing
the same homology class are the boundary of a pseudo-manifold cobor-
dism in the usual sense. For simplicity, we shall also use A;, B; to
denote the pseudo-manifolds representing those homology classes «;,
B;. Then we can choose a generic almost complex structure J and a
generic inhomogeneous term v such that there are only finitely many
(J,v)-perturbed holomorphic maps f : ¥ — V satisfying: f(z;) € A;
1<i<k), fE)NB; #0 (1 <j <), and f,[X] = A. For each
such f, the set {(y1,...,v); f(y;) € B;} is also finite. We define the
multiplicity m(f) to be the algebraic sum of the elements of this set
with appropriate sign according to its orientation. Then, we define the
mixed invariant

(I)(A,u,g)(ala"' s Ok |ﬂ1a"' aﬂl) = Zm(f)

One can prove that this number &4, (01, , 0| B, -+, F) is inde-
pendent of the choices of J, v, marked points z;,--- ,z; in X, pseudo-
manifolds representing «;, §;, and the complex structure on X. Fur-
thermore, the number depends only on the semi-positive deformation
class of w. Therefore we obtain a mixed invariant
Qawgla, - ,ar| B, -+, B), where g is the genus of ¥. This invari-
ant is nothing else but Witten’s topological o-model invariant or k-point

correlation function in case [ = 0. It is also clear that
Qawoor, 00,05 B1,-+,6) is just the Gromov invariant
D 4w0)(01,00,03,0, -+ ,0). For convenience, we would like to ex-

tend ®(4u,q)(0,...,0k|P1, -+ ,0) for any «;, B; regardless of their
degree. We just simply define it to be zero unless

k

Z(2n —dego;) + Z(2n —2—degf;) =2C(V)(A4) +2n(l —g).

i=1 =1

The invariant ®(4 . 0)(01, -, 04|01, - ,3) in the case of rational
curves was already defined by the first author in [19] for £ = 0 or
I = 0. In fact, he only defined the invariant over rational numbers
since he assumed that «; and (; can be represented by the bordism
classes. It is well-known that not every integral homology class can be
represented by a bordism class. It was Gang Liu who pointed out to
the first author that a pseudo-manifold (5.1) can be used in place of
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a bordism class in the definition of the invariant. The use of pseudo-
manifolds does not cause any extra difficulties. The construction of
@ awg)(a1, - 04|01, -+ ,0) for higher genus can be processed in a
similar fashion. However, for higher genus, one possible difficulty is
that a sequence of J-holomorphic curves could degenerate to a lower
genus curve. For example, a sequence of elliptic curves can degenerate
to a cusp elliptic curve, whose normalization is a holomorphic sphere.
Contrary to intuition, the dimension of moduli space will increase when
the genus decreases. This is thought to be a major difficulty to com-
pactify the moduli space of pseudo-holomorphic curves of higher genus.
A key observation in our work is that the phenomenon we just describe
will NOT happen for perturbed J-holomorphic maps for a generic in-
homogenous term. In principle, the freedom of choosing inhomogenous
terms allows us to show that perturbed J-holomorphic curves only de-
generate to stable curves in the sense of Deligne-Mumford. Hence, we
have a good control over “bad degenerations” like cusp elliptic curves.
Therefore we can use perturbed J-holomorphic maps, instead of J-
holomorphic maps, in defining our mixed invariants for higher genus in
much the same way as for genus 0. Some applications of special cases
of the mixed invariant have been considered by [5], [15], [20], [21].

Let M, be the moduli space of k-point stable smooth curves
(24,1, , k), 1ie., Deligne-Mumford stable curves, where ¥, is a
smooth Riemann surface of genus g. Then ®4, 4 can be considered
as a constant function on M, ;. Now we let k-point stable smooth
curves degenerate to a singular k-point stable curve C in M, ;. The
composition law associated to this degeneration is a formula which com-
putes ©4 ., 5) in terms of the mixed invariants on the components of C.
The general formulation of the composition law is rather complicated.
We will leave it to section 7. Let us first discuss two special cases,
which play an important role in the general theory and applications.
Write the Deligne-Mumford stable curve C as (2,21, ,zx). In the
first case, & has two components ¥, X, satisfying: (1) £; and ¥, have
genus g, g2 (g1 + g» = g) and intersect at a double point P; (2) X,
carries m marked points z,,- -+ , %, (k+2¢92—2>m > 2—2¢g;) and %,
carries the rest of the marked points. Then, the composition law states
that 4., can be calculated by the invariants corresponding to %;
and contributions from the double point P. More precisely, we can do
as follows: Let {H,} be a basis for the torsion free part of H,(V, Z),
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and A be the diagonal of V x V. By the Kiinneth formula, we can
write

=Y 9"H, x H,,
where {7°7} is the intersection matrix of the basis {H,}. Thus the
composition law for this case is

Q(A,w,g) (ala o ak'ﬁh ) )

(1.1) = X ZZZ u"’w

A=B1+B2 j=0 o ~, ‘7
@B w15 O, H, I Borys s Bo())
'(I)(Bzywygz)(am-f-l’ e, o, Hs ] )Ba(j+1) yT Ty )Ba(l))a

where o runs over all permutations of 1,--- ,{, and €(o) is the sign of
the permutation induced by o on odd dimensional g;’s

The second case is that ¥ is a genus g — 1 curve with a node. Then
the composition law for this case is

q)(A,w,g) (ala ter L, O 1 617 e aﬁl)
(12) = Zn‘y‘rq)(A,w,g——l)(alv e ’akaH'wH‘r |Bl7 Tt 761)'

¥.T

In the general case, a Deligne-Mumford stable curve C may have many
components with complicated intersection pattern, but all intersection
points are ordinary double points. Thus the general composition law
can be derived from the above formula by induction. We refer the
readers to section 7 for more details. Our main theorem is

Theorem A (Theorem 7.2). The composition law of the mized
invariants holds for any semi-positive symplectic manifold (V,w).

Corollary 1.1. The composition law of the topological o-model in-
variants holds for any semi-positive symplectic manifold (V,w).

The first application is to establish a quantum ring structure on
the cohomology of a semi-positive symplectic manifold. The k-point
function ® 4 ,(cy, - ,04) was defined in [19] and coincides with the
mixed invariant ®4.,,0)(@1, -+, | ); it also depends on a homology
class A. We can drop this condition by summing the contributions over
all possible A. So, we can formally write the k-point function as

(13) &)w(ah e aak)(t) = Z &)A,w(al, vt ,ak) e_t“’(A).
A
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We define

(14) faB'y = ‘i)w(Ha?HB,H'y)(t)
and

(15) £ = 17 fu.

Let {H}} be the basis of H*(V, Z) dual to {H,}. Then, we define the
quantum multiplication

(1.6) HixqHy=> fl,H.
Y

The associativity is not obvious and is equivalent to the following iden-
tity:

Zﬂ”‘i)u(Ha, HﬂvHa') &)w<H‘ra H’yy H&)

1.7y o ~ -
( ) :Zna"-@w(HaaHJaHa')@w(HraHrthS)'

o, T

This is a consequence of the composition law for 4-point functions,
where two different stable degenerations give the two sides of (1.6).
Therefore, we have

Theorem B (Theorem 8.1). The quantum multiplication is as-
sociative; consequently, there is a quantum ring structure on the coho-
mology of a semi-positive symplectic manifold V.

From Theorem A and Theorem B it follows that

(1-8) Hc:1 X@ - Xq H;k = Zn’yd&)W(Haw e ’Hak’H'Y)Hg'

7,6

There is a convergence problem with the series in (1.3). There may be
infinitely many homology classes which contribute to the summation
in (1.3), such as, in the case of Calabi-Yau 3-folds or C'P? blown up at
9-points. But for a symplectic manifold with positive first Chern class,
the summation in (1.3) is always finite (cf. section 3). However, for a
general semi-positive symplectic manifold, the Novikov ring can be used
to be the coefficient ring of the quantum cohomology to get around the
problem of convergence (cf. section 8). The quantum multiplication
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on the cohomology with the Novikov coefficient ring is also associative
(Theorem 8.4). The idea of using the Novikov ring was first used by
Hofer and Salamon in the context of Floer homology [8].

The mirror symmetry conjecture relates the quantum cohomology
with the variation of Hodge structures of its mirror (may or may not
exist). A crucial step to prove the mirror symmetry conjecture is to
construct a family of flat connections on H,(V,C), which deform the
trivial connection. Those flat connections should be different from the
Gauss-Manin connections, which come from the variation of Hodge
structures. Using the composition law of mixed invariants (not just o
model invariants), we can construct such a family of flat connections.

Let W = H*(V,Z) ® C. For simplicity, assume that H*(V, Z) is
torsion-free. Then any w in W is of the form

L
w=) 4Hj,
i=1

where L is the dimension of W. Write w. = ZLI t;H; as the point in
H.(V,C) corresponding to w. We extend the mixed invariant ® (4, 0) to
H*(V,C) by linearity. Following E. Witten [25], we define a generating
function

e ¥ e &L

]
(1.9) A€H,(V,Z) L v m:
'(I)(A,u),O) (’LU*, Wy, w*lwln Ty wm—3*)-
This function is a power series in ¢;,--- ,¢;. From Theorem A in the
case k = 4 it follows that ¥, satisfies the WDVV equation:

asqlw oT 63\1}9) . 63\1}0) oT 63\1}""
(110) 3 0t 0t,0t, | OLOt;0t, ; Bta0t,0t, | Otpts0t,

o, T

If we define A = {A};} by

oA
AL, =S e
o Z" Bt,0ts0t,

then V., = V, + €A defines a family of connections on the tangent
bundle TW over W, where V, is the trivial connnection on W. The



266 YONGBIN RUAN & GANG TIAN

WDVYV equation is equivalent to the flatness of the connections V..
Therefore, we have

Theorem C (Theorem 9.1). V. is a flat connection and a defor-
mation of the trivial flat connection V.

Finally, we give an application of this theorem to a classical problem
in enumerative algebraic geometry. Let o, 4(j1,72, - 1+ Js) be the num-
ber of rational curves of degree d in C'P™ intersecting linear subspaces
of codimension ji,...,j, where j; > 2 and X(j; — 1) = (n + 1)d + n.
It is a difficult problem in enumerative algebraic geometry to calcu-
late 0,,4(j1,72,"** ;Js)- One of these o, 4(j1, 72, - ,Js) has the fol-
lowing interpretation. Given any degree d algebraic curve C in CP”,
its Chow coordinate X is a hypersurface in the Grassmannian man-
ifold G(n — 1,n + 1) and consists of all (n — 2)-subspaces in CP",
which have nonempty intersection with C. This Chow coordinate X
is, unique up to multiplication by constants, defined by a section in
H°(G(n—1,n+1),0(d)), where O(1) is the positive line bundle gen-
erating the Picard group of G(n — 1,n + 1). Let N(n,d) + 1 be the
dimension of H*(G(n — 1,n + 1), O(d)). Then there is a subvariety in
C PN consisting of Chow coordinates of rational (possibly singular)
curves in CP". We denote by n, the degree of this subvariety. Then
we have

Ng=0pan—2,n—2,--- ,n—2).
Using the symmetry, we may arrange j; > j, > -+ 2> j,. For conve-
nience, we put o, 4(j1,J2, " ,Js) =0 if j1 > nand o,4( -+ ,4s-1,1) =

don -+ ,Js-1). Then from Theorem C follows
Theorem D (Theorem 10.4). The following recursion formula
holds

Un,d(jlvj27j3aj4?' t 7jk) = an,d(j17j2 + 17j3 - 1?.747" : vjk)
+d0n,a(j1 +Js — 1,725 Jas- - - 5 Jk)
_dan,d(jl +j2)j3 - 17j43 e 7jk)7
mOd(an,la"' ,an,zi—l)'

The explicit expression of the lower order terms will be given in
section 10.

Corollary 1.2. Let ny; be the degree of the subvariety of degree d
rational curves in the space of all degree d homogeous polynomials over
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CP?. Then
1 dydy(3ddydy — 2d? + 6d,d)(3d — 4)!
Ng= 3 Ng,Ndy-
¢7 2 ;: (3d; — 1)!(3d, — 1)! 4

In particular, ny =1, ny =1, nz = 12.

This recursion formula of computing ng for CP? was first derived by
Kontsevich, based on the composition law predicted by physicists. Its
generalization to CP" in Theorem D was also derived by M. Kontse-
vich and Y. Manin [10] from some axioms, which were first suggested
by physicists and formulated by them. Here we give a different and
mathematically rigorous proof. We also generalize our method to Fano
manifolds with Picard number one like hypersurfaces and complete in-
tersections. In particular, we give a recursion formula of our invariants
for rational curves on those manifolds. We conjecture that our in-
variants on any Fano manifold are indeed the enumerative geometric
invariants in case the degree of rational curves is sufficiently large. A
precise formulation of this conjecture will be given in section 10. How-
ever, it is not hard to show that our mixed invariants are enumerative
on any Del-Pezzo surface.

Let us briefly describe our method of proving the composition law.
Let ¥; be a sequence of genus g Riemann surfaces with k-marked points,
and f; : ; = V be a (J,v)-perturbed holomorphic curve for each
i. In the Deligne-Mumford compactification, ¥; degenerates to a k-
point stable curves C. Geometrically, one can obtain C by collapsing a
disjoint union of simple close curves. Collapsing of each simple closed
curve gives rise to a double point. To achieve the degeneration which we
need to prove the composition law, we take advantage of inhomogeneous
Cauchy-Riemann equations and let the inhomogeneous term degenerate
along some prescribed circles in the Deligne-Mumford compactification.
By taking a subsequence, we may assume that f; converges to a limit
map f whose domain is the stable curve C with some bubbles. There
might be some bubbles at the double points. Such a situation did
not exist in previous compactness theorems. On each component of
C, f satisfies an inhomogeneous Cauchy-Riemann equation. On each
bubble, f satisfies a homogeneous Cauchy-Riemann equation. Then
by counting dimensions, one can show that the space of such f with
some bubbles will be of smaller dimension. Thus, in order to compute
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the mixed invariant in terms of the perturbed holomorphic maps from
C, we have to prove that any f from C can be deformed into a (J,v)-
perturbed holomorphic map from ¥; into V for sufficiently large <.
We also need to show that such a deformation is unique for a given
inhomogeneous term v and has the same orientation as that of f. In
general, such a deformation is impossible to achieve. However, due
to the freedom in choosing inhomogeneous terms, we can prove the
existence of deformation with the required properties. This will be
done by using the Implicit Function Theorem.

The paper is organized as follows: The definition of our symplec-
tic invariants will be given in the next section. Then we will prove
the transversality and compactness theorems on moduli spaces of per-
turbed holomorphic maps in sections 3 - 6. They are necessary for
both defining our invariants and proving their composition law. We
will prove the composition law in section 7. The quantum cohomology
will be discussed in section 8, and its application to the mirror sym-
metry conjecture will be discussed in section 9. In last section, we give
applications to enumerative algebraic geometry.

The main results of this paper were announced in [22] with the same
title. In a forthcoming paper, we will allow the conformal structure to
vary in the definition of the mixed invariants and prove the composition
law for them. During the preparation of this paper, we were informed
that G. Liu and D. McDuff [11] could also prove some results related to
the composition law for 4-point functions of rational curves for mono-
tone symplectic manifolds. We also received a preprint of Kontsevich
and Manin [10]. In [10], among other things, they also derived the
formula in Theorem D for CP™ by assuming the associativity for the
mixed invariants. The first author would like to thank Kontsevich to
share with him his elegant idea of deriving the recursion formula for
rational curves in CP?. We would also like to thank Dr. Siebert for
his many suggestions towards the improvement of this manuscript.

Very recently, we received a preprint from B. Crauder and R. Mi-
randa [4]. In the preprint, they discussed the quantum cohomology
ring for a general rational surface; by a “general” surface they mean
one in which all linear systems have the expected dimension.
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2. Mixed invariants

In this section, we will construct a mixed invariant for any given
genus. The construction is based on two propositions, which we will
prove in the following sections. Such a mixed invariant generalizes
Gromov’s and Witten’s invariants defined by the first author in [19]
for genus zero. The basic idea in constructing the mixed invariant is
similar to that in [19]. The same idea was previously used by Donaldson
in defining his celebrated polynomial invariants for 4-manifolds. There
are two motivations for our generalization. First of all, it is necessary
for our applications to mirror symmetry and enumerative geometry.
Secondly, it is needed in the composition law. Let us begin with a brief
discussion on the topological idea behind our construction.

Consider the evaluation map

ev:Map(E, V) x X = V.

Given any a € H*(V, Z), there are two ways to induce a cohomology
class on Map(%,V): p(a) = ev*(a)/[X] or i(a) = ev*(a)/[pt], where
“/” is the slant product. The first operation p descends to the quo-
tient of Map(2,V) by the automorphism group G of 3, which gives
rise to the Gromov invariant. The second operation [ gives rise to
Witten’s topological o-model invariant. We combine both p and f in
the definition of our mixed invariant.

To define the mixed invariant rigorously, we need to introduce in-
homogeneous Cauchy-Riemann equations. Let (V,w) be a symplectic
manifold, ¥ be a Riemann surface of genus g, and A € Hy(V, Z) with
C1(V)(A) > 0. Let J be an almost complex structure on V. There are
two relative tangent bundles over ¥ x V with respect to w; (1 = 1,2),
where 7; is the projection from ¥ x V to its i-th factor. A section v of
Hom(n{T%,n3TV) is said to be anti-J-linear if for any tangent vector
v in T,

(2.1) v(is(v)) = —J(¥(v)),

where jx is the almost complex structure on 3. Usually, we call such
a v an inhomogeneous term.

Definition 2.1. Let v be an inhomogeneous term. A (J, v)-perturbed
holomorphic map, or simply a (J, v)-map, is a smooth map f: X - V
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satisfying the inhomogeneous Cauchy-Riemann equation
(2.2) (0sf)(z) = v(z, f(2)),

where 3; denotes the differential operator d+ J - d - jx.

We denote by M4 (X, J, v) the moduli space of (J, v)-perturbed holo-
morphic maps from ¥ into V, such that f,[X] = A. By (4.12) for a
generic pair (J,v), the moduli space M 4(%, J,v) is smooth and admits
a canonical orientation induced by the linearization of the Cauchy-
Riemann operator at each (J, v)-map.

Let {oi}1<i<ks {B;}1<j<i be integral homology classes of V' satisfying

(2.3) > (2n—deg(a:))+ > _(2n—deg(B;)—2) = 2C1 (V)(4)+2n(1—g).

Note that by the Index Theorem, the real dimension of M4 (X, J,v) is
2C1(V)(A) +2n(1 — g). We denote by o}, 8} the Poincaré duals of «;,
B;. Intuitively, the mixed invariant should be defined to be

(I)(A,w,g)(ala 7akl,317"' 7/31) _
=p(af) U Up(ag) UAB) U --- U (B )[Ma(E, J,v)],

where M 4(Z,J,v) is a suitable compactification of M4(Z, J,v) (cf.
section 3). To make it rigorous, we have to use the following construc-
tion through intersection theory.

Let z1,--- ,z; be a set of distinct points on X, which is a Riemann
surface of genus g. One can think of (¥;z;,---,z;) as a Riemann
surface with £ marked points. Then we can define the evaluation map

€=, X,Jv) 5MA(E, J, 1/) X (E)l — Vk % Vl — Vk—H,
Fivns e otn) = (F@1)y s F@); Fn)y - s Flu),

where X = {z1,---,zx} is the set of the marked points. Clearly,
e(x,x,J,») is smooth. On the other hand, every integral homology class
can be represented by a so called pseudo-manifold. A dimension d
pseudo-manifold (Y, F) is a dimension d stratified space Y together
with a continuous map F : Y — V satisfying: each lower stratum is
of codimension at least two, and F' is smooth on each stratum. Any
two such pseudo-manifolds representing the same homology class are
the boundary of a pseudo-manifold cobordism in the usual sense.. Now

(2.4)
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we choose pseudo-manifolds (Y;, F;) (Z;, G;) representing «;, 3;, where
i=1,---,kand 5 =1,--- ,l. We define

k i k l
(2.5) F=]]FEx]]G;: [[¥: x[] 2; — V**.
i 7 i J

We will denote by P the domain pseudo-manifold of the map F. Clearly
the pseudo-manifold (P, F) represents the integral homology class
[, x I1; B; in H, (V¥ Z). From our assumption on the degrees
of a; and B; it follows that the images of ez x, s,y and F have compli-
mentary dimensions in V**!, Moreover, we have

Proposition 2.2. For a generic almost complez structure J and a
generic inhomogeneous term v, we can choose F (5.4) such that the
following hold: :

(i) The maps ez x,1,) and F intersect transversally at finitely many
points. More precisely, there are only finitely many (f;y1,--- ,w) in
MA(E, J,v)x ()}, and p in P such that ez, x, 70 (f301, -+, u) = F(p),
and furthermore, at each such intersection point, p is a smooth point
of P, and the image of the tangent space T, P under F is transversal
to the image of the tangent space

T(f;yl,m ,yz)MA(E7 J, V) X (E)l

under the evaluation map. In particular, there are only finitely many
(J,v)-perturbed holomorphic maps f : & — V satisfying: f(z:) €
CIm(F) (1< <), f(S)NIm(Gy) #0 (1<5 <1), and £,[Z] = A.

(i€) There are no sequences {fs}s>1 in M4(Z,J,v) such that as s
goes to infinity, fs(z;) converges to a point in F(Y;), and f,(X) con-
verges to a subset in V which intersects any G;(Z;).

The proof of this proposition needs some results from the following
sections, so we will postpone its proof until the end of section 5. In fact,
it follows easily from a dimension count that for a generic pair (J,v),
the image of ez, x,7,,) does not intersect any lower strata of F(P). Here
by a lower stratum of F(P), we mean the image of a lower stratum of
P under F.

Now we can define our mixed invariant as follows: Fix a pair (J,v)
such that e(s,x,7,) and M4 (X, J,v) satisfy all properties described in
Proposition 2.2. First we associate a multiplicity m(f) to each f in
M4(E, J,v). We define m(f) to be zero if either f(z;) is not in Fi(Y;)
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for some 7, or f(%) does not intersect with one of G;(Z;). If f is as given
in Proposition 2.2, there are finitely many (y5,- - ,yq) (1 < s < m)
such that f(y,;) € G;j(Z;). We put €(f,s) to be £1; the sign is deter-
mined by the orientations of M4(Z, J,v) x (2)! (See Remark 4.12),
P, Viiiat (f;9s1, -+ ,Ys), etc., and the Jacobians of the maps ez x,7.)
and F. Define

(2.6) m(f) = X; e(f,9),

and finally the mixed invariant

(2.7) D@, ok B, B) =Y m(f).
For convenience, we simply define

(2.8) Qauwgar, o | By, ) =0

in case 3-¥(2n — deg(ay)) + X! (2n — deg(B;) — 2) is not the same as
2C,(V)(A) + 2n(1 — g).

The following proposition assures that ®4 . 4) is indeed an invariant,
although we chose special representatives in its definition.

Proposition 2.3. @4, (a1, - ,a¢| B, -+, 0) is independent of
choices of the J, v, marked points z1,--- ,xz; in L, pseudo-manifolds
(Yi, F;),(Z;,G;) representing o;, B;, and the conformal structure on I.
Furthermore, the number depends only on the semi-positive deforma-
tion class of w.

As before, we will postpone the proof of Proposition 2.3 until sec-
tion 5. First we collect a few properties of our invariant. These prop-
erties can be easily proved by using (2.5), and Propositions 2.2, 2.3.

Proposition 2.4. Assume that g = 0. Then the mized invariant
?(A,w,o)(al,--- ;0 | By -+, Bi) coincides with the Witten invariant
Qaumyon, -+ o) (cf. [19]) in case | = 0, and with the Gromov
invariant ®a.)(0q, 00, 03,01, ,0) (cf. [19]) in case k = 3 and
Ci(V)(A) > 0.

This follows directly from (2.7) and the definitions of the Witten
invariant and the Gromov invariant in [19].

Proposition 2.5. The mized invariant

(I)(A,w,g)(ala cer O |ﬂ11 T 7ﬂl)
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is multilinear on o; and B;. Furthermore, we have the following:

(1) The invariant ® a4 is identically zero if the “virtual” dimen-
sion 2C,(V)(A) +2n(1 — g) < 0.

(2) ®awglon, - a5 |Br, -+, B) is zero if one of B; is of degree
greater than 2n — 2.

(3) If k +2g > 4, ay is the fundamental class [V], then ®a.u. 4
(v sk | Brve- o Br) is equal to B(a gy, s | By 5 3.

(4) @awo)far, - a5 | B, -, B) is equal to
d®awglar, - ,ar| B, ,Bi-1), if Bi is of degree 2n — 2 and d =
AN G is the intersection number.

(6) In case A =0, ®auo0)ar, - ,ar|Br, - ,06) ts zero if | > 0
and the intersection number a; N---Nay if [ = 0.

Proof. We only prove the linearity in a special case:

(29) Q(A,u,g)(al +a11, 1ak'/31"" wBl)
= Q(A,w,g)(al"" ,aklﬁla"' a/Bl) +©(A,w,g)(a,1)"' ,aklﬁla"' 7/31)-

The proof for other cases is identical.

Let (Y;, F}), (Z:, G;) be as before. Suppose that (Y], F]) is a pseudo-
manifold representing o). We may assume that Fi(Y;), G;(Z;), F{(Y})
are in general position. Then,

k i k l

(muY)x[]Yvix ]2, (FiuF) x[[Fix ] G))

i=2 j=1 i=2 j=1

represents the homology class (o + o)) x IIr, 0 H;zl B; in
H, (V¥ Z). Let f be any map in Mu(2,J,v) satisfying:
f(z) € FE(NMUF|(Y)), f(z:) € F(Y;) fori > 2, and f(Z)NG;(Z;) # 0.
Then [ contributes to both ®¢4, o(a1, -, |6, -+ ,6) and
Pawg (@), ar|Br, -+, (), hence, (2.9) follows.

Next we prove (1)-(5). (1) is trivial, since the moduli space
M 4(Z, J,v) is empty for a generic (J, v) by the standard Transversality
Theorem (cf. [16]). For (2), we may assume that §; is of degree greater
than 2n — 2. If the invariant is nonzero, for any generic (J, v), there is
at least one f in M4 (X, J,v) such that f(z;) € Fi(Y;) (1 <i< k) and
f(Z)NG;(Z;) is nonempty (1 < j <1-—1), where (Y, F;), (Z;,G;) are
pseudo-submanifolds given as above. However, since dim(Z;) > 2n — 2,
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we have
k -1

(2.10) Y _(2n —dim(Y;)) + > (2n — 2 — dim Z;) > dim M4(Z, J,v).
i=1 j=1

Therefore, by counting dimensions and using the Sard-Smale Transver-
sality Theorem, one can show that such a f can not possibly exist for
a generic (J,v), so (2) is proved. Similarly, one can prove (3) and (4).
For (5), we may assume that v = 0; then all (J,v)-maps are constant
maps and the moduli space M 4(Z, J, v) is naturally identified with V.
A map f in M4(E, J,v) satisfying: f(z;) € F;(Y;) and f(X) N G,;(Z;)
is nonempty, is in one-to-one correspondence with an intersection point
in [, F;(Y:) 0 11; G;(Z;). Hence (5) follows.

Proposition 2.6. Let (V,w), (Va,w2) be two symplectic manifolds.
Let V =V; x V3, and w = w; ® wy. Then we have

Dy on (@1 © 0+, @ )
(2.11)
= 8l (@15 DG, 0 g (01 i),

where ®Y, ®V1 and ®"> denote the mized invariants on V, V; and Vs,
respectively.

This is a straightforward corollary of the definition of the mixed
invariants.

Proposition 2.7. The invariant ® 4,4 is symmetric in the fol-
lowing sense:

‘I’(A,w,g)(al,"' y Oy iy, 5 O | Byyeee v By Bigr, ,Br)
= (_l)deg(ai)deg(ai+l)¢(A,w,g) (ala Cr Oy, Oyt e O ,,BI: e 1181)
= (_l)deg(ﬂj)deg(ﬂj+l)¢(A,w,g)(al? T, O | 1817 Tt ,:Bj+1,,6j7 e 1:81)1

where 1 <i<k—~landl <j<Il-1.

This follows directly from the definition of our mixed invariants.

Remark 2.8 (about relaxing the genericity condition). Usu-
ally, it is difficult to check if a particular (J,v) satisfies the properties
stated in Proposition 2.2 and required in the definition of our mixed in-
variants. This amounts to establish certain vanishing theorems, which
do not hold in general, for such a pair (J,v). However, when we cal-
culate the invariants in applications, we often use a particular (J,v),
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such as (Jp,0), on an algebraic manifold with complex structure Jj.
Therefore, we would like to relax the genericity condition used in the
definition of our invariants.

In fact, we only need to assume that the singular part of M 4(Z, J,v)
is of real codimension at least two. Then we can perturb pseudo-
manifold representatives to achieve all the properties needed in the
definition of our mixed invariants. This is very useful for computing
the invariants for algebraic manifolds, since the moduli space involved
in these cases is usually a variety, possibly with some singularities.
Given any sequence {f,} in M4(X, J,v), by taking a subsequence, we
may assume that f; converges to a (J,v)-map f., from ¥ and finitely
many holomorphic maps from 52 into V' (cf. Proposition 3.1). Putting
all these limits together, we obtain the Gromov-Uhlenbeck compactifi-
cation M4(Z, J,v) of M4(Z, J,v).

Definition 2.9. A pair (J,v) is said to be A-good if the set of f €
M4(2, J,v) such that CokerL; # 0 is of codimension 2, and the set
of curves, which are in the image of maps in M4 (X, J, v)\M4(Z, J,v),
has dimension less than dimg(M4(Z, J,v)) — 2 — r(X), where r(Z) is
the dimension of the automorphism group of 3, and L; denotes the
linearization of the inhomogeneous Cauchy-Riemann equation at f.

If (J,v) is A-good, we can define the mixed invariant ® 4, ¢ by using
(J, v)-maps and generic pseudo-manifold representative (Theorem 5.4).

Remark 2.10 (When can we let v = 07). There are two places
where we need to use the inhomogeneous term v, namely, multiple cov-
ering maps and A = 0, ¢ > 1. The second situation is quite subtle.
For example, consider the genus-one holomorphic curves in CP? with
zero homology class. Obviously, they are constant maps, so the moduli
space has real dimension 4. But it follows from the Index Theorem
that the “virtual” dimension is 0. Therefore, we have to use perturbed
holomorphic maps in this case. This phenomenon also affects the in-
variant for genus-one curves of degree one. It is well-known that there
are no holomorphic genus-one curves of degree one. But our invari-
ant is not zero in this case, which can be seen from the composition
law that we prove in section 7. What happens here is that the com-
ponent of degree-zero genus-one curves creates a large component of
cusp curves in the Gromov-Uhlenbeck compactification of the moduli
space of genus-one degree-one curves. QOur invariant depends on the
compactification of the moduli space instead of the moduli space itself
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only. This large component of cusp curves will make nontrivial contri-
butions. When we perturb the Cauchy-Riemann equation by adding v,
we will have solutions for the inhomogeneous Cauchy-Riemann equa-
tion even though there are no solutions for the homogeneous one.

There is also a problem with the Gromov-Uhlenbeck compactifica-
tion M 4(%, J,0). A sequence of maps f, in M4(%,J,0) can converge
to a cusp curve with a bubble, such that the homology class of the
bubble is A. Therefore, M 4(X, J,0) has a component consisting of J-
holomorphic maps from S? with homology class A. This DOES happen
in algebraic geometry. Note that

dim M4 (%, J,0) = 2C(V)(4) + 2n(1 — g)
< 2C,(V)(A) + 2n = dim M 4(5?, J,0).

Hence, it is more difficult to prove that the boundary
M4(Z,J,00\M4(%, J,0) has smaller dimension in the case of higher
genus curves.

To overcome this difficulty, we need a finer compactness theorem
than the Gromov-Uhlenbeck compactness theorem (Proposition 3.1).
In algebraic geometry, there is a notion of arithmetic genus for holomor-
phic curves (smooth or singular), which takes into account mulplicities
of singularities, order of tangency between different components and
some algebraic data. The arithmetic genus is upper-semi-continuous
for flat deformations of holomorphic curves. We conjecture that there is
a notion of arithmetic genus for J-holomorphic curves, which is lower-
semi-continuous with respect to Gromov-Uhlenbeck convergence. If
this conjecture is true, then we will be able to show that in the situa-
tion we described, the bubbles will develop sufficiently many singulari-
ties and give a finer compactification. This will enable us to show that
the boundary components of the compactification of M 4(%, J,0) have
smaller dimension. Using an estimate of the minimal surface theory,
we can affirm this conjecture in the case of genus-one curves.

The moduli space M ,4(%,J,0) may contain maps of the form
h -, where i is a map in Mp(¥',J,0) and 7 : £ — X' is a branched
covering map of degree m. Note that A = mB. We will see later
that such multiple covering maps do not make any contributions to the
mixed invariant ®4 ., under some numerical condition (cf 2.13). A
particularly interesting case is when M 4(X, J, 0) contains only maps of
the form A - = as above. Let {&;}1<i<k, {B;}1<j<1 be homology classes
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of V in (2.3). If we further have

k

{
(2.12) Z(Zn — 2 — deg(a)) E; (2n — 2 — deg(;))
> 26, (V)(B) + 2n(1 — ¢') - (g
) =

where ¢’ is the genus of ¥', r(0) = 6, r(1) = 2 and r(¢') = 0 for ¢' >
2, we may choose pseudo-submanifolds (X, F;), (Y}, G;) representing
a;, B, such that no holomorphic map in Mg(¥', J,0) intersects with
all F;(X;), G;(Y;). For any small inhomogeneous term v, since all
(J,v)-maps have their image in the vicinity of the image of maps in
Mpg(Z', J,0), there is no (J,v)-map which intersects with all F;(X;),
G;(Y;). It follows from the definition of the mixed invariant that

(D(A,w,g)(al,"' ,aklﬁlf" :;Hl) =0

On the other hand, because of (2.3), (2.12) is equivalent to
(2.13) 2(m - 1)C(V)(B)+r(g') >2k+2n(g—¢),

and therefore, we have the following vanishing theorem.

Theorem 2.11. Let M4(Z, J,0), Mp(X', J,0) be given as above.
Assume that (2.13) holds. Then ®(a, (a1, -+ ,aclfr, - ,B) vanishes
for any homology classes a;, B;.

This theorem is often very useful in computing our invariants.

3. A compactness theorem

In this section, we prove a compactness theorem, which is needed in
both defining the mixed invariant and proving the recursion formula;
its proof is based on certain estimates of Uhlenbeck and Sacks, Schoen
on harmonic maps, and a result in [17]. There have been various com-
pactness theorems, which are all based on Gromov’s original idea, for
J-holomorphic maps (see [16], [17], [26]). In our situation, we allow de-
generation of Riemann surfaces, so we have to analyse bubbling from
singular points of the domain.

An admissible curve is a connected Riemann surface, possibly singu-
lar, with at most nodes as singularities. Recall that a degeneration of
admissible curves is a holomorphic fibration 7 : S — A € O satisfying:
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(1) Sis an (m+ 1)-dimensional complex variety with normal crossings;
(2) all fibers of 7 are admissible. A special class of such degenerations
consists of all surface fibrations 7 : § — A in C with smooth generic
fibers.

We denote by Js the complex structure on S, and J an almost com-
plex structure on a compact symplectic manifold (V,w). Assume that
J is w-tamed. An inhomogeneous term v over S is simply a homo-
morphism from the tangent bundle T'S of § into TV satisfying: v is
anti-(Js, J)-linear, i.e., J-v = —v - Js. It is easy to show that any
inhomogeneous term on the central fiber 7=*(0) extends over S.

Now we fix a degeneration 7 : § — A in C™. Let {¢;} be a sequence
converging to the origin 0 in A as ¢ goes to infinity. We denote 77 (%;)
by {%;}, and v|s, by v;. Then X; converges to an admissible curve X, =
771(0), and v; converges to a smooth inhomogeneous term v, = v|s_
in C*-topology. Namely, there are continuous maps 7; : ¥; = X, and
compact subsets K; in 3, satisfying: (1) U K; = £, \{double points};
(2) 7; restricts to a diffeomorphism from 77*(K;) onto K;; (3) for each
J, both ||is_ - dri — d7; - js,||osk;) and ||vs - d7; — vi]|oa(k;) converge
to zero as 1 goes to infinity.

Consider

(3.1) Mu(Z, Jv) ={f :Zi=V|df +J-df - ju, = vi, f.5; = A},

where A € H,(V, Z) is a fixed homology class, and jy, is the conformal
structure on X;.

Let f; : 3; = V be a smooth map for each . Then we say that f;
converges to foo : Yoo M V if || foo - i — fillc3 10c COnVerges to zero as 4
goes to infinity (cf. [17 ( p.386)]), where 7; is given as above. We want
to study the limit of M 4(33;, J,v;). In general, 111)121 M (Zs, J, ;) may
not be contained in M4(Z, J, Vs )-

Proposition 3.1. Let f; be in M4(%;, J,v;). Then there is a con-
nected curve X, which is the union of the smooth resolution Yoo 0f Boo
and finitely many smooth rational curves, such that a subsequence of
{f:} converges to a (J,)-perturbed holomorphic map f on X, where
the inhomogeneous term U coincides with vy, on ioo and vanishes on
those rational curves. Moreover, we have f.(X) = A.

The rest of this section is devoted to proving this proposition. For
reader’s convenience, we may sketch the proofs of some known lemmas.
We recommend [17] for more details on these lemmas.
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Without loss of generality, we may assume that ¥; is smooth. In the
general case, we can replace X, by its desingularization and proceed as
we are doing in the following.

First we make a reduction. Put W = § x V. We can introduce
an almost complex structure Jy on W as follows: any tangent vector
on W is of the form (u,v), where v is in T'S and v is in TV, define
Jw (u,v) = (Js(u), J(v) + v(Js(u))). It is easy to check that this is an
almost complex structure, tamed by some symplectic form wy on W of
the form wg + w, where wg is some symplectic form on S. Moreover, if
we define F; : &; — W by F;(z) = (z, fi(z)), where z is in X, then F;
is Jw-holomorphic. Therefore, it suffices to show that a subsequence
of {F;} converges to a holomorphic map F : & — W with F,(Z) =
F,.(X;), where X is given in Proposition 3.1. Thus we reduce the general
case to the case that the inhomogeneous term v is actually zero. From
now on, we assume that each f; is J-holomorphic. We also fix a J-
invariant metric A on V.

Lemma 3.1. There is a uniform constant C4, depending only on
A, such that for f; € M4(%;,J,0), we have

(3.2 [ it < Ca,

where u is any hermitian metric on X;.
Proof. Fix a ¥ = ¥; and a map f = f;. Then we have

/Zf*w=/f(2)w=/Aw.

The last integral is a fixed number.
At each point z € V, choose a local unitary basis ey, - - - , e, of T2V
with respect to h. Then

w=2Re (wg’ﬂ) e; A e;) +w§;’1)6: AE;T,

where {e}} is the dual basis of {e;}. Let {u;,us} be a local orthonormal
basis of (X, ), such that jsu; = uy, jsus = —u;, then

df (wr) + J - df (uz) =0,

ie., .
fiei+ fyJ(e:) + fié; + f3J (&) = 0,
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and therefore i i
Y _1f2z> flz =V _1f21,

We denote by {uj,u3} the dual basis of {u;,us}. Then

wiV f(er Aed) = WPV (fFiff — fifl)ut Au
= —\/_wfjl 1)(f1fl + fafd)ut Aus.

We also have
wiOf (e nep) = wO (fifi — fifl)ui Aup =0.

Since J is w-tamed, there is a constant ¢ > 0 such that

WiV (Fifl + fiff) > cldf2,

so that the lemma follows.

Lemma 3.2. There are ¢¢ > 0 and C > 0, such that for any J-
holomorphic map f : £ — V, and any metric p on X with curvature
bounded by 1, if [p, (., ldf|12dp < € and the injectivity radius at x is
not less than 2r, where x € ¥ and r > 0, then we have

C
(3.3) sup |dff} < =,
B, (z) T

where B,(z) is the geodesic ball centered at x and with radius r. Con-
sequently, ||fllca(s.(x)) < Cs for some constant Cy, which may depend
on the C°-norm of u.

Proof.  This is essentially Theorem 2.3 in [17]. For the reader’s
convenience, we sketch a proof here. By scaling, we may assume that
r = 1. Let po be the maximum of the function 4p? supg, , () |df!2.
Choose o in By_y,,(z) such that

ldfli(mo) = sup ldflz = €o;

Bz‘-?Fo (=

then for any y in B,,(y), |df|2(y) < 4e,- By switching to the metric
u' = eop, the ball D = B, (x,) has radius R = pp/€,. We claim

sup Idfli, < 16;
Bl(:B)
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otherwise, R > 2. Since supy, |df |i, < 1, by the standard Bochner-type
formula, one can show,

A (ldf12) < aldf|2,

for some constant o depending only on V. Therefore, by the Mean-
Value Inequality (cf. [7 (Theorem 9.20)]), one can deduce

L= @ (@) < CU+a) [ Jdfdu,

Bi(zo,u')

where C' is a uniform constant. Using the invariance of the Dirichlet
integral under conformal transformations, one can easily see that the
above integral is less than ¢;. Therefore, we derive a contradiction if €
is sufficiently small, and the lemma is proved.

Let u; be a sequence of metrics on X; satisfying: (1) The curvature
K(u;) is bounded by 1; (2) the injectivity readius InjRad(u;) > 1; (3)
1; converges uniformly to a complete metric u., on the nonsingular part
of ¥, in C%-topology; (4) the limit metric po, is cylinder-like near the
singular points of ¥,. The existence of such metrics yu; is well-known.

Set r,, = 2™, Define

Em,i = {CE c 2,'27 € /

|dfz'|;2“d;u‘i > €},
B, (@,ui)
where ¢ is given in Lemma 4.2. Clearly, E,, ; is contained in E,, ; if
m>m'.

Claim. For i sufficiently large, each E,,; can be covered by balls
Bs, (Z15y phi)y -+ 5 Bar,, (T1iy 1), where 1 is independent of i.

Proof. We fix 7. By the standard covering lemma, we can find
P, .-,z in En; such that FE,; is covered by balls

B21‘m (',L';nuu‘i)’ e 7Bzrm (m;cnmuu‘i)a and
BTm (xgl’ iu‘l) n Brm (zglnu‘z) = @7 if o 96 IH

This implies

km
Ca Z/ |dfl%, dp; > Z/
o8 /B

ie., km < €4, where Cy4 is the constant in Lemma 4.1. Note that
km = 0 for m sufficiently large.

) |df;|%. dpi > kmeo,

rm (zrﬂn sHi
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We will select zy;,- - - , z;; from those points z7* (m > 1, 1 < a < k)
as follows: We say that {7}, <p<m, is a string if 2%  is contained in
Bzr,,_l(xﬂ:_ll,ui) for all m; < p < my. Clearly, for any m; < p <
q < my, By, (xﬁp,ui) is contained in B, (xgq,ui). Such a string is
maximal if it is not contained in another string. The last point in
a maximal string is called a maxiaml element. We put all maximal
elements together and order them as zy;,--- , ;. By using Lemma 3.1
and the standard covering lemma, one can show that [ is uniformly
bounded. Hence the claim is proved.

Without loss of generality, we may assume that for each ¢, the se-
quence {Z4;} converges to a point Z,.,. Note that z,. can be a singular
point of 3.

By Lemma 3.2, there is a constant C),, which depends only on m,
such that

WfillesmaNn,, (Bu.d) < Chs

where N, (E,;) is the tubular neighborhood {z € %;|ld(z,E,,;) <
4r,}. By the Ascoli Theorem and taking a subsequence if neces-
sary, we deduce that f; converges to a J-holomorphic map fm on
T\, (B N ZL) in C3- topology, where X! is the nonsingular
part of X,. Since E,, o, is contained in E,, o, for m > m/, we can glue
fim together to obtain a map f on B \E.. Clearly, f; converges to f
on L \F, and f is a J-holomorphic map. Moreover, we have

/E |df12_ dueo < o0.

Lemma 3.3. Let f be any J-holomorphic map from a punctured
disk D — {0} in a Riemann surface into V', and let 11 be a metric on
D. If [, |df|idu < 00, then f extends to a smooth J-holomorphic map
on D.

This is Theorem 3.6 in [17] (also see [16]). It is essentially the Re-
movable Singularity Theorem of Uhlenbeck. We omitted its proof.

Applying this lemma, we can extend f to be a J-holomorphic map
on the smooth resolution ¥, of L. We still denote this extension by
I

We need to examine the behavior of f; near z,;,--- ,z;. For sim-
plicity, we may assume [ = 1, say z; = z,; for each i. The general case
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can be treated identically. There is a point yy; in B%(mz—, ;), such that

(3.4) ldfil%. (yu) = sup |dfil2, = e

Bi(zi,pi)
We may assume that e; diverges to infinity. We change the metric u;
on B (z;,u;) as follows: Let i be a cut-off function satisfying: 7(t) = ¢
fort <1+e;,n(t) =e fort>2+e;, and |9 (¢)] < 1. Let p be the
distance function from y;; of ;. Define

r_ eiui
(3:5) B = n(1 + 16e;0?) "
Then
(3.6) |dfilu, (y1s) = 1, |dfil%, < n(1+ 16e:p”);

in particular, |df;|,, < 9 for \/egp < 4. Since f; is J-holomorphic, by
the standard elliptic estimates, one can easily show

(37) Lo Nl >,
Bi(yie,ul) '

where J is a positive number independent of 7. Note that u] coincides
with p;, and |df;|,, is bounded by a uniform constant in
B (z, ui)\B% (24, ps)- If |dfi],;, is not uniformly bounded on B, (z;, u:),
then there is a y,; in B%(mi, i)\ Bs(y1i, 1), such that

|df

i‘- (y2:) = sup |dfi|i; = ;.

By (i,
Now e} diverges to infinity as i increases. We change p; in a small
neighborhood of y,; as we did for u; in a neighborhood of y;;. For
saving notation, we still denote by u; the changed metric. If |dfi],
is not uniformly bounded, we repeat the above arguments and obtain
Y34, Y4i, SO On. Suppose that we have found yy;,- - ,yzi. Then

Bl(yaia /‘I’{z) N Bl(yﬂi:u;) = 07 for o 7‘4 :85

[ a2
By (Yaionl) :

Since the Dirichlet integral is conformally invariant, from these we de-
duce that £ < %A. Therefore, after repeating the above arguments in
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finitely many steps, we obatin a metric u; such that |df;|,; is uniformly
bounded on B;(z;, ;). Moreover, by taking a subsequence if neces-
sary, we can find y;;,- -+ ,yr;, where L is independent of ¢, such that
|dfilu: (Yai) = 1, each Br, (ya:, 4;) is biholomorphic to a ball in C, and

Bpg, (Yai, #;) N Br, (ypi, i) =0, for a #p,

where lim B; = oo. It follows that for each «, fi|pg, (ya:u) cCOnverges
to a J-holomorphic map f, from C into V. By Lemma 3.3, such a f,
extends to be a J-holomorphic map from 52 into V.

Let us examine the limiting behavior of the restriction of f; to
By(zi, 8)\ Ue—1 Br, (¥ai, ). Define

L
(3.8) Fr = {z € Bi(zis )\ | Br.(¥air 1) | /B i 2 e
a=1

7

l(x’/-",‘

where € is any fixed number less than ¢, in Lemma 3.2. By Lemma 3.1
and our construction of y, one can show that each Ff is strictly con-
tained in a disjoint union of pants or annuli Pg; (1 < g < NV;) satisfying:
(1) the diameter diam(Ps;) < r, where r > 0 depends only on ¢; (2)
each boundary component of P, is connected to either £\ B, (z;, p) or
one of the balls Bpg, (yai, ;) by a connecting cylinder. Each connecting
cylinder C%; is of the form S" x [0,T,;], where 1 < v < M;. Note that
Ts; can be zero. Since both M; and N; are bounded independent of
i, by taking a subsequence if necessary, we may assume that they are
equal to fixed integers M and N, which are independednt of ¢ and e.

Lemma 3.4. (cf. [17]) There is a uniform constant ¢ such that for
eachl1<y<Mandi>1,

(3.9) [Vl < ce.

Y

Furthermore, if p denotes the distance function from the boundary of
the cylinder C,;, then there is a uniform constant A < 1 such that for
any R >0,

(3.10) [ 1 dn < cex*
p>R '

Proof. We will always denote by ¢ a uniform constant. We fix a
pair 4. By Lemma 3.2, |df;|%, < ce. It follows that the boundary of
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fi(C%;) consists of two circles I', and T'; satisfying:

Length(T';) < v/ce, Length(Ty) < v/ce.

Since € is small, I, 'y span two disks D;, D, in two small balls of
radius 2y/ce. Let S be the closed surface in V obtained by gluing D;,
D, to f;(C,;) along '}, 'y, respectively. Then S is homologeous to zero
in V. This can be easily seen as follow: Cut C7; into cylinders with
diameter less than one, and glue disks to boundaries of these cylinders
as above; thus we obtain a number of spheres of bounded size in V. By
the gradient estimate on f;, each such sphere is contained in a small
ball of radius 2+/ce, so it is homologeous to zero. Now S is homologeous
to the sum of those small spheres, so it is homologically zero, too. Since
S bounds a 3-dimensional set, by the Stokes’ Theorem, we have

02/0):/ fz-"w+/ w—/ w.
S Cqyi Dy Dy

On D,, we can integrate w to get an 1-form 4, such that w = du, and
|u1] < 44/ce on D;. Then by the Stokes’ Theorem,

/ w= / u; < Length(T';) sup |u,| < 4ce.
D1 Fl Dl

Similarly, one can show

/ w < 4ce.
D

/ fiw < 8ce
Cui

Hence (3.9) follows from this and the w-tameness of J. In [17], (3.10)
was derived from (3.9) by an isoperimetric inequality. One can also
derive (3.10) directly. Since a similar estimate will be given in the
proof of Lemma 6.10, we omit the proof of (3.10) and refer the readers
to Lemma 6.10.

Since f; is J-holomorphic, for each 1 < § < N, by taking a sub-
sequence if necessary, the restriction of f; to Pj; converges to a J-
holomorphic map f§,, as i goes to zero. We can arrange Pg, C Pg;
for € > €. Then for each 3, we can glue f5, together to obtain a J-
holomorphic map f; from a punctured sphere into V. By Lemma 3.3,

Therefore, we have
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this f; extends to be a J-holomorphic map from S? into V. Note that
f4 can be a trivial map. Since P, is connected to either ¥;\ Bi(z;, us),
or some Bg, (Yai, f4;) by some cylinder C*;, using Lemmas 3.2, 3.4, one
can easily show the image of f; must intersect with either f(Ee) or
one of f,(S?). We define f to be the sum of J-holomorphic maps f,
fo and fs- Let X be the domain of f. In fact, one can take ¥ to be an
admissible curve.

Finally, we show that f,(X) = A. Let ¢ be any closed 2-form on V.
Then for any sufficiently small ¢, by Lemma 3.4 we have

[ 54 ( [
3 E\B1(z:,u:)

The restriction of f; to X;\Bi(z;, pt:) U Br, (Yai, 1) U Pj; converges to
flu., where U, is an open subset in ¥ such that {J,,, U. is equal to &
with punctures. Therefore, by letting € go to zero, from the above we

deduce
Lre=[ re=][o

so that f,(X) = A. Hence Proposition 3.1 is proved.

L

X:I/B;,i(yai,ﬂi) +§:/P§;) fieo + Ofe).

a= g=1

4. Transversality of compactification

From Proposition 3.1 it follows that the moduli space M4(Z, J, v)
admits a natural compactification M 4(, J, ), which contains all ge-
ometric limits (“cusp” curves) of sequences in M4(%, J,v) (see para-
graph 5 for details). Such a compactification is called Gromov-Uhlen-
beck compactification. In this section, we prove a structure theorem
for M 4(2, J,v) (Theorem 4.2). For the purpose of proving the com-
position law, we also need to consider the case that ¥ is only a stable
curve (possibly singular).

Recall that an l-point genus g stable curve C = (L,z1,--- ,2;) is a
reduced, connected curve ¥, whose singularities are at most ordinary
double points, plus &k distinct smooth points z; in ¥, such that every
smooth rational component of C contains at least three points which
are either x;’s or double points of ¥. Geometrically, one gets an [-point
genus g stable curve by adjoining a set of curves with double points,
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and adding some marked points to each rational component. We will
call a double point of C a distinguished point on the component of X
on which it lies.

Let ¥ be a stable curve and have m components ¥y, -- ,X,,. An in-
homogeneous term v over ¥ is a set of inhomogeneous terms vy, -+ ,vp,
such that each v; is an inhomogeneous term on ¥; (cf. (2.1)). A map
f X = Vis (J,v)-perturbed holomorphic if its restriction f|s, to
each X; is a (J,v;)-perturbed holomorphic map. As before, we de-
note by M4 (2, J,v) the moduli space of (J, v)-perturbed holomorphic
maps from ¥ into V with f.(¥) = A. Note that M 4(Z, J,v) contains
many components My, ... a.y(2, J,v) whose elements are (J, v)-maps
f 2=V with f,(£;) = A; for 1 < i < m, where the sum of the
A; is A. The goal of this section is to prove a structure theorem for
Ma(Z, J,v).

Definition 4.1. A ¥-cusp (J,v)-map f is a continuous map from
¥' to V, which is smooth at smooth points of ¥’, where the domain X’
of f is obtained by joining a chain of §?’s at some double point of ¥ to
separate the two components at the double point, and then attaching
some trees of S2’s. We call components of ¥ principal components and
others bubble components. For each principal component, the restric-
tion of f is (J,v)-perturbed holomorphic. The restriction of f to a
bubble component is J-holomorphic, i.e., 8;f = 0. A Z-cusp curve is
an equivalence class of cusp maps modulo the parametrization groups
of bubbles PSL,C. Because we take into account of constant holomor-
phic maps, we allow the image of a principal component under f to
have zero homology class. But the image of any bubble component
under f will always have nonzero homology class. Furthermore, we
will always use intersection points to denote the intersection points
between the components of the domain.

By our definition, a cusp curve is just a collection of curves whose
domains interest according to the intersection pattern sepecified by the
homeomorphism type of domain of a cusp map. By Proposition 3.1,
we can compactify M4(X,J,v) by adding X-cusp curves with total
homology class A. We will divide the set of cusp curves by some equiv-
alence relation and study the structure of the quotient. There are two
cases: (i) Some of the bubble components may be multiple covering
maps, and it is well-known that transversality theory fails for multiple
covering maps [14]. In this case, we will simply forget the multiplicity
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and take the reduced map onto its image; (ii) Adjacent or consecutive
bubbles have the same image, in this case, we will collapse them into
one bubble. Clearly, the resulting curves are still cusp curves with pos-
sibly different total homology class. Let M4 (X, J,v) be the quotient
of the cusp-curve-compactification of M 4(%, J,v) by this equivalence
relation. Then M4(Z, J,v) — M 4(Z, J,v) is just a union of cusp curves
with possibly different total homology class. We will prove the following
structure theorem.

Principal Components

FIGURE 1. DOMAIN OF A CUSP MAP

Theorem 4.2. Let (V,w) be a semi-positive symplectic manifold.
For a generic (J,v), M4(Z,J,v) is a smooth, oriented manifold, and
Mu(Z, J,v)—M4(Z, J,v) consists of finitely many pieces (called strata),
and each stratum is branchedly covered by a smooth manifold of codi-
mension at least 2.

Remark 4.3.  There is a problem whether or not M4(Z,J,v)
carries a fundamental class. To prove the existence of a fundamental
class, we need the additional property that M4 (X, J,v) — M4 (Z, J,v)
has a neighborhood which is a deformation retract to itself. This is
much stronger than what we gave in Theorem 4.2. It is a difficult
problem to show the existence of a fundamental class, and involves
much more analysis. However, we do not need the fundamental class
in this paper.

The rest of this section is devoted to the proof of Theorem 4.2. First
we shall decompose M 4(Z, J,v) — M4(Z, J,v) into strata. A stratum
is the set of cusp curves (possibly with total homology class different
from A) satisfying: (1) they have domain of the same homeomorphic
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type; (2) Each connected component has a fixed homology class. Fur-
thermore, for technical reasons, we need to specify those components,
which have the same image even though they may not be adjacent to
each other, and their intersection points having the same image. There-
fore, the strata of M4(Z, J,v) — M4(Z, J,v) are indexed by datas: (i)
homeomorphism type of the domain of cusp curves with distinguished
points at appropriate intersection; (ii) a homology class associated to
each component; (iii) a specification of components with the same im-
age and their intersection points with the same iamge. We denote by
D a set of those three data. Let Ds be the collection of such D’s.
Note that when we drop the multiplicity from a multiple covering map,
we change the homology class. However it is still A-admissible in the
following sense:

Definition 4.4. Let D be given as above. We define [D] to be
the sum of homology classes of components in (ii). Let P,,--- , P, be
principal components and By, --- , By be bubble components of D. We
say that D is callled A-admissible if there are positive integers b,, - - - , by
such that

(4.1) A= i[Pi] + > bi[By),

where [P;], [B;] are the homology classes of P;, B;. We say that D
is (J,v)-effective if every principal component can be represented by
a (J,v)-map, and every bubble component can be represented by a
J-holomorphic map.

We will always denote by ¥; the domain of the (J,v)-map repre-
senting P;. Let Dﬁ’,';: C Dy be the set of A-admissible, (J, v)-effective
D.

Lemma 4.5. The set ’Di’:g is finite.

Proof.  First we remark that for any given stable curve ¥ and
the number of principal and bubble components, there are only finitely
many homeomorphism types of possible domains of cusp curves. There-
fore, it is enough to show that the number of possible homology classes
of principal components or bubble components is finite. For each D in
D%, let P,,--- , P,, be the principal components of D, and B, - -+ , By
be the bubble components of D. Note that m depends only on %,
so it suffices to bound % uniformly. Assume that P;, B; are repre-
sented by fr,, fs,- We denote by E(P;) the energy of fr,, and by
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E(B;) the energy of fp,. Then by Lemma 3.1, there is a uniform con-
stant ¢ such that E(P;) < c(w(P;) + 1) and E(B;) < cw(B;). Since
A=YTP +3%b;B;, we have

m k
S B(R)+ 3. 0,8(B;) < c(w(A) +m).

On the other hand, there is a uniform constant ¢ > 0 such that
E(B;) > e for all j. This implies that & is finite. Also, E(FP;), F(B;)
are uniformly bounded from above, so from the Gromov-Uhlenbeck
Compactness Theorem (Proposition 3.1) it follows that there are only
finitely many possible homology classes, for P;, B;. Therefore, Di’g is
finite.

FIGURE 2. CREATE A CYCLE

One can consider Df,“';g as the set of indices of strata. For each
De Df{fg, let Mx(D, J,v) be the space of Z-cusp curves such that the
homeomorphism type of its domain, homology class of each component,
and components and their intersection points, which have the same im-
age, are specified by D. Now we make another reduction by identifying
the domains of those components which have the same image, and
change the homology class accordingly. Furthermore, we identify the
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corresponding intersection points with the same image. Suppose that
the resulting new domain and homology class of each component are
specified by D. This process may destroy the tree structure and creat
some cycles in the domain. The total homology class also changes.
However, it remains to be A-admissible. The following two diagrams
illustrate this process.

Given such D and D, we can identify Myx(D, J,v) with the space
of (J,v)-maps whose domain and homology class of each component
are specified by D. Let us denote this space by Mx(D, J,v). Then for
each f in Mx(D, J,v), bubble components have different images. As
before, let P,,--- , P, be the principal components, and let B;,--- , By
be the bubble components. Now we shall construct a smooth branched
covering of M4 =(D, J,v). Let £p be the domain of maps in the stratum
Mg (D, J,v). This is a union of £; and some $?’s. Consider

Ms(D, J,v)={f:Sp =V | fa € Mpy(Zi, J,15),

42) fa, € Mig)(S%,3,0), Im(f5,) # Im(fa,) it 5 #35'},
where M 1(5%,7,0) C Mip;(S?,J,0) is the space of non-multiple
covering maps. Sometimes, we drop (J,v) in case there are no confu-
sions. For each bubble component, there is a parametrization group
G = PSL,. Therefore G* acts on Mx(D,J,v), and Mg(D, J,v) =
Msx(D, J,v)/G*. Clearly,

(4.3)  Ms(D,J,v) C [[ Mipy (S, J,vs) x [] Mis,1(S%, J,0)/G.

But Myx(D,J,v) is not smooth in general. We would like to desin-
gularize Mz (D, J,v). More precisely, we will use an idea in [19] to
construct a smooth manifold N (D, J,v) and a branched covering map
7 : Ne(D,J,v) = Mg(D,J,v). Note that Mx(D,J,v) is a proper
subset of [T Mp,(Zs, J, v5) x [T M{g,,(5?, J,0), whose components in-
tersect each other according to the intersection pattern given by D.
Let h; be the number of intersection points on the component P,. Note
that we count a self-intersection point twice. Here, the intersection
points between the components are the points in their domain, not
in their image. Among them, there are p; many distinguished points
and marked points which are bubbling points. Suppose that they are

z},--+,2}.. Similarly, let A’ be the number of intersection points on
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the bubble component B;. Consider the evaluation map

€p: HM[P.'](Eia']? Vi) X (Ei)hi_p" X HMFB]_](S2,J, 0) X (S2)hj
= [V < [[vY =v?s,

where hp = Y_h; + Y. h?, and ep is defined as follows: We first define

(44) €p, : M[P'.](Ei,“], I/i) X (Ef)h{—pi — Vh:',
ePi(faxla' o ’whi—Pi) = (f(zi), i 7f(z;7,')1f($1)7 T ,f(xh,'—p,;))'

For each B, we define ep, : Mg, (5%, J,0) x (82)» — V¥ by

(4.5) eg; (Fryn, -+ yyn) = (F(y1)s- -+ 5 Fyns))-

Then we define ep = [Jep, x []ep,. Recall that if M, N are submani-
folds of X, M N N can be reinterpreted as M x N N A, where A is the
diagonal of X x X. This means that we can realize any intersection
pattern by constructing a “diagonal” in the product. Let us construct
a submanifold Ay C V" which plays the role of the diagonal. Let
21, , 2, be all the intersection points. For each z;, let

Is = {Pi11"' 7]31' le""?‘Bjr}

g7
be the set of components which intersect at z,. Now we will construct
a product V; of V such that its diagonal describes the intersection at
zs. This is done as follows: We allocate one or two factors from each
of V%1 ... V™ according to whether or not z, is a self-intersection
point of the corresponding principal component. We allocate one factor
from each of V" ... | V", Here V" or V¥ are the image of ez, or ez, .
Then, we take the product of those factors and denote it by V,. Let A,
be the diagonal of V,. Then the product Ap = A; x---xA;, C Vs is
the diagonal to realize the intersection pattern between the components
of D. Let 7 be the natural projection from

T Mipa (S, Jovs) x (Z)%) x [T (M[‘Bj](Sz,J, 0) x (s?)h")

onto

H M[R’](Eh Ja Vz‘) X H M{BJ.](SQ, J, 0)
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Then 7(e;' (Ap)) D Mz (D, J,v). But they may not be equal because

we require that bubble components have different image. Moreover, the

group G®5 acts on e;'(Ap) and W‘l(_/\;ig(D, J,v)), where by = 3" k7.
Definition 4.6. We define

Nz(D, J,v) = ep (Ap) N1~ (Mx(D, J,v))
and
(4.6) Nx(D, J,v) = Ns(D, J,v)/G*>.

Clearly, 7 : Nx(D, J,v) — Msx(D, J,v) = Mx(D, J,v) is a branched
covering. The fiber over f in My (D, J, v) is the set of unordered tuples
of intersection points between components of f.

Theorem 4.7. For a generic (J,v), Nx(D, J,v) is a smooth mani-
fold of dimension

> RCH(V)(F) + 2n(1 — g)))
+> (261 (V)(B;) + 2n — 6) + 2hp — 2ux — 2sp — 2n(hp — tp),

where g; is the genus of X;, ux is the number of distinguished points,
i.e., twice of the number of double points of ¥, sp is the number
of marked points which are bubbling points and tp is the number of
intersection points of D. Moreover, for generic (J,v) and (J',v'),
there is a generic path (Ji, 1) connecting (J,v) and (J',v') such that
Utego Ve (D, Jy, v;) x{t} is a smooth manifold of one dimension higher.

By the construction of D, it is evident that t5 < tp and hp < hp.
But, hp —tp = hp — tp. Therefore, we have

Corollary 4.8. Under the conditions of Theorem 4.7, the dimension
of diim Nx(D, J,v) is less than or equal to

> _CHV)(P) + 2n(1 — g:))
+ > (2C1(V)(B;) + 2n — 6) + 2hp ~ 2ux, — 2sp — 2n(hp —tp).

Proof of Theorem 4.7. In[13 (Lemma 4.8-4.11)], McDuff proves the
theorem for rational curves. The proof for general cases is identical.
For the reader’s convenience, we give a sketched proof here. Let J be
the space of w-tamed almost complex structures equipped with Sobolev
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norm W*? for a sufficiently large I. It is a Banach manifold. For each
J € J, the inhomogeneous terms are elements of [[}* Hom|, (T'S;, TV),
i.e., sections of the bundle of anti-J-linear homomorphisms from T P; to
TV over P;xV. So our space of inhomogeneous terms is a vector bundle
over J with fiber [[7* Hom;(T'E;, TV) equipped with the W2-Sobolev
norm.

For each P;, we have a universal moduli space

(4.7) He, = {(f, v) | f: Zi= V, O;f =i}
For each Bj, we also have a universal moduli space

H;Bj ={(f,J)]f:S2—)V,Im(f)=Bj, éJf:O;

(4.8) f is not a multiple covering}.

It is well-known (cf. [13], [19]) that those universal moduli spaces are
smooth Banach manifolds. We define an evaluation map

(4.9) en : [[(He x (S %) x [[(Hy, x (SH)) = Vho

and the diagonal A p as before. On the other hand, there is a projection
map

(4.10)  ©: [[(He x (Z)™77) x [[(Hp, x (8H)¥) = J™+-.

Let Ay C (J)™* be the diagonal.

Lemma 4.9. ©7'(A5) is a smooth Banach manifold.

Proof.  There is another way to construct ©~'(A) as follows:
Consider the space P of inhomogeneous terms, which is a vector bundle
over J with fiber [], Hom,(T'S;, TV). For a fixed J € J, we can form
a Hilbert bundle Q%" (e}, TV) or Qg’l(e}gj TV) over Mapp,(%;, V) or
Map(z,(5?, V) in the same way as one did in [19]. Then by varying J,
we obtain a bundle

[T 2% (erTV) x [[ Q2 (ep,TV)
Z J

— [[ Mapp (5:, TV) x ][ Mapig, (5%, V) x P.
i J
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There is a canonical section S = (8; — vy,...,0; — Unm,85,-++ ,05)
of this bundle. Then ©7'(Ay) is a fiber bundle over S71(0) with
fiber [T(%;)* 7 x (S?)b5. To show that ©®'(A ;) is a smooth Banach
manifold, we only need to show that S is transversal to the zero zection.

Let a = (f1, ,fm, C1, ++ ,Cr, J,v) € §71(0). We want to show
that the differential dS(a) is surjective to the fiber

[195 (erTV) x [] 05" (e5,TV).
: J

As we showed in {19], the differential 4S is surjective on each factor
Qg’l(e};{ TV') regardless of J. So it suffices to show that §S is surjective
on each factor Qg’l(e‘l‘;jTV). Let (a1,...,0z) be in the cokernel of §S.
Then «; satisfies the equation L}a; = 0, where

L : QUf*TV) - QY (f*TV)

is the linearization of the Cauchy-Riemann operator d; at f, which is
an elliptic operator. Choose a point z; € S? such that dC;(z;) # 0
and C;'(C;(z;)) = {z;}. We want to show that «; is identically zero.
By the Unique Continuation Theorem for elliptic operators, it suffices
to show that o; vanishes in a neighborhood of z;. If k¥ = 1, this
is a classical argument [14]. Let us sketch the argument. We can
perturb the almost complex structure in a neighborhood of z; such
that the image of 65 contains all the local sections of Q5" (e3,TV) at a
neighborhood of z;, which vanish outside a slightly larger neighborhood
of z; . Since o, is orthogonal to the image of 4§, this implies that «;
vanishes in a neighborhood of z;. In the general case, we can always
suppose that zj,--- , z; are distinct and perform the same argument at
a disjoint union of neighborhoods of z;. Then, the proof of the general
case is identical to the case k = 1.

Next we claim that e : ©71(A ;) — V" is transversal to Ap.

Let (vi, -+ ,v:,) be a point in Ap = Ay x -+ x A,,. Let I, =
{Pin"' 7‘F,ipaBj17"' ’Bjr} and

(flaglaxly"' afmagmaxm;clayla"' 7CkaykaJaV) € 6_1((?)13"' 7vt,5))-

Then, fi(z:) = -+ = fi,(z,) = C;,(y) = -+ = Cj.(y5,) = vs.
We claim that there are only finitely many accumulation points of
ImC;NImC} (see {13 (Lemma 4.4)]). Its proof is standard and can be
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outlined as follows: The Hartman-Winter Lemma ([9 (Lemma 2.6.1)})
implies that the derivative of C; or C}; vanishes at most at finitely
many points; consequently, Im(C; ) or Im(C ) is smooth outside finitely
many points. If the claim is false, then there is an accumulation point
y' where both Im(C}) and Im(C}/) are smooth. Near ', one can choose
local coordinates (z;,--- ,z,) of V such that z, - C; = 0 for all £ > 2.
Since Im C; # ImC}/, 2 - Cj is not identically zero for some k > 2.
Using the Hartman-Winter Lemma again, one can show that z; - Cj
vanishes only at finitely many points, a contradiction to our assump-
tion on y'. Then the claim follows. Therefore, for each C;,, we can
choose a small disc Dj, around y;, such that there is a smaller disc D;
satisfying that the anulus D;, — D} does not intersect other bubble
components. By the work of McDuff [14], given any tangent vector
X € T,,V, there is a perturbation Ct of Cj, on Dj;, such that C}, is

still J-holomorphic, C} = C}, and ¢ (yh) t=o = X. We can patch
C} with Cj,|s2_p;, to get C}, deﬁned on S? . does
not intersect other bubble components either. Here we also need to
perturb the almost complex structure J to J; in a small neighborhood
of ImCj,|p,,-p; such that C} is Jt holomorphic. Clearly, other bub-

bles are also J, holomorphic. But & (yJ )|t=o = X. For a principal
component f; , the argument is even easier. We can just choose an
arbitrary perturbation f} on a small disc D;, around z;, (z;, could

t=0 = X Then we patch

be a distinguished point) such that (:c,)

it with f;, |s,_p,, to get a globally deﬁned fi with & dt (:cis)|t:0 = X.
Then we simply perturb v;, such that v/ = 0;ff on the graph of f .
Then f; satisfies an inhomogeneous Cauchy-Riemann equation with
inhomogeneous term v/ . Applying this argument to each v, and every
point in e5' (Ap), we show that

e: 07 Ay) o V"

is transversal to Ap. Therefore, ©7'(As) Ne '(Ap) is a smooth Ba-
nach manifold. Moreover, we have a Fredholm map

O (A ) NeL(Ap) = P.

By the Sards-Smale Transversality Theory, for a generic element (J,v)
of P, its preimage Nz (D, J,v) is a smooth manifold. G2 acts freely on
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Nax(D, J,v). Therefore, Ns(D, J,v) = Ng(D, J,v) /G5 is smooth. A
routine counting argument yields the dimension. The proof of second
part of theorem is identical.

A special case is that D only has one principal component X, where
we call D to be sectional in [19]. In this case, Mx(D,J,v) is in the
boundary of M4(Z, J,v).

Corollary 4.10. Suppose that D is sectional. Then for a generic
(J,v), Ns(D,J,v) is a smooth manifold, and for generic (J,,v,),
U; Ns(D, Ji, vs) x {t} is a smooth cobordism.

We need this corollary in the definition of the mixed invariant. An-
other special case is

Corollary 4.11. If D has no bubble components at all, then for
a generic (J,v), Ma(%,J,v) = Ng(D,J,v) is smooth, for generic
(Ji, 1), Uy Ma(Z, Jy, ) x {t} = U, Ne(D, J;,v;) x {t} is a smooth
cobordism.

Remark 4.12 (on orientations). Compared to Donaldson gauge
theory, the theory of pseudo-holomorphic curves is considerable more
complicated in many aspects like compactness. But the orientation
problem for pseudo-holomorphic curves is much easier. In fact, there
is a canonical orientation over M4(Z,J,v) [13] [19] for genus 0 case.
The argument for higher genus case is completely the same. For the
reader’s convenience, we sketch the argument here.

First of all, we can view a (J,v)-map as a holomorphic map to Ex V
(the paragraph before Lemma 3.1). Without loss of generality, we
can assume that v = 0. Recall that the linearization of the Cauchy-
Riemann operator d; at f € M4(Z, J,0) is

Ly : QUf*TV) = QL (F*TV).

The tangent space TyM (%, J,0) = KerL;.. The determinant line
bundle det(T'M (3, J,0)) = det(L;), which is defined over Map 4 (X, V).
An orientation of M4(X, J,0) is just a nowhere vanishing section of
det(TM4(Z, J,0)) up to a multiple of positive function. We shall omit
“ up to a multiple of positive function without any confusion” with-
out any confusion. Therefore, to construct a canonical orientation of
Ma(Z, J,0), it is enough to construct a canonical section of det(L;)
over whole Map 4 (X, V). Choose a J-linear connetion V over V. Then,
L; can be written as
Lf = Vf + Zf,
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where V is the induced J-linear connection over f*T'V, and Z; is the

zero order term. Let
Lf7t = Vf + th.

Then, det(L;,) is isomorphic to det(L; o). Hence, det(Ly) is isomorphic
to det(Vy). On the other hand, both kerV; and cokerV; are complex
vector spaces. Therefore, there is a canonical section of real determi-
nant line bundle det(V;) corresponding to the complex structure. We
refer to [19 (Theorem 3.3.1)] for the argument of the independence of
this canonical section from the choice of V. By the same argument, one
can show that Usejo 1y M4 (Z, J;, 1) X {t} carry a canonical orientation.

Next, we compute the codimension of Ns(D, J,v). First we consider
an easy case.

Proposition 4.13. Suppose that ¥ is a genus g stable curve. Then

dim M4(X, J,v) = 2C,(V)(4) + 2n(1 — g).
Proof. Clearly, hs, = us, = 2ts; and sp = 0. Hence
dim M 4(Z, J,v) = 2C,(V)(A) + 2n(1 = Y_ ) + 2n(m — 1) — 2ntsx.

Recall that we can obtain X by adjoining sy-many disjoint simple closed
loops on a genus g Riemann surface. Collapsing of each loop will corre-
spond to a double point. We shall prove Proposition 4.13 inductively by
collapsing the loops one by one. Let 3, be a stable curve. We collapse
a circle on some component of ¥; and obtain another stable curve X,.
Suppose that we collapse a circle v on a component B of genus §. There
are two cases. First, we separate the component B into two compo-
nents B;, B, of genus ¢,,g,. Then § = g, + g2, m increases by 1 and sy
increases by 1. Therefore, 2C; (V)(A)+2n(1-3 g;) +2n(m —1) — 2nis
remains the same. If collapsing of v does not separate the component
B, then it creates a self intersection on the component B. In this pro-
cess, the genus drops by 1, m remains the same, but ss increases by 1.
Clearly, the dimension formula remains the same.

Proposition 4.14. Suppose that (V,w) is a semi-positive symplectic

manifold. Then for a generic (J,v) and a D in 'Dfl’,';:,

(4.11)  dimNg(D, J,v) < 2C,(V)(A4) + 2n(1 — g) ~ 2kp — 2sp,

where kp is the number of bubble components of D (not D).
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Proof. By Corollary 4.8, the dimension of N5 (D, J,v) is less than
or equal to

ZZCl(V)([D]) +2n(1 — Zg,-) +2n(m — 1) + (2n — 6)kp
+2hD — 2'11.2 - 2SD - 271(}1,[) - tD)

For a generic J,
2C1(V)(B;)+2n—-6 = dimeBi](Sz, J,0)/PSL, > 0.

If some bubble component B; happens to be the image of two or more
bubble components of D, then

dim Nz (D, J,v) <Y 2C1(V)([D]) + 2n(1 = ) g:) + 2n(m — 1)
+(2n — 6)kp + 2hp — 2ug — 2n(hp — tp).

Since (V,w) is semi-postive, C;(V)(B;) > 0 for a generic J. Since D is
A-admissible, C,(V)([D]) < C1(V)(A). Let

>‘D = (2n - 6)kD + 2hD — 2n(hD - SD).

By Proposition 4.13, it is enough to show that Ap < Ay — 2kp =
2hs, — 2n(hg — ts) — 2kp. We will prove this by induction on k. When
k = 0, it follows from Proposition 4.13. Suppose that it is true for &k
and D has k + 1 many bubble components. We consider two cases:

Case 1. There is a bubble component B such that there is only
one intersection point on the B-component. In this case, there is a
bubble tree in D, and B is at the tip of one branch. Therefore, we can
remove a B-component and obtain the domain of a ¥-cusp curve D’
with k-many bubble components. Suppose that the intersection point
is z. Then, there are two situations. First, there are at least three
components intersecting at z.
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In this case, after the removal of a B-component, we still have the
same number of intersection points. Then,

hD = hD/ + 1, Sp = S8pr.
So,
Suppose that there are only two components intersecting at z. After
the removal of a B-component, we will have one fewer intersection point
on the component intersecting the B-component. Thus,

hD:hDI +2, SDZSDr+1.
Hence,
/\DS/\DI+2n—6+4—2nS/\E—2(k+1).

Case 2. Every bubble component has at least two intersection
points. Then, there is no bubble tree on D, and D is obtained by
joining chains of bubbles to separate double points. In this case, every
bubble component has exactly two intersection points.

Now we collapse any bubble component, say B, to end up with D’,
a domain of a ¥-cusp curve with ¥ many bubble components. Clearly,

hD:hD’+2, SD=SDI+1.
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Hence,
Ap=Ap +2n—6+4—2n < Ag —2(k+1).

Finally, we have
Proof of Theorem 4.2 (Structure Theorem). It follows from Lemma
4.5, Theorem 4.7, Proposition 4.13 and 4.14.

5. Proof of Propositions 2.2, 2.3

After our work on compactness and transversality theory in last two
sections, we are ready to prove Propositions 2.2, 2.3, which were used
in section 2 to establish the existence of the mixed invariant and its
independence from various parameters. Hence, the mixed invariant is
a symplectic invariant. We also consider transversality between inter-
secting components of (J,v)-map from a stable curve. This is needed
in the gluing argument of next section.

In order to prove Propositions 2.2, 2.3, we need an additional transver-
sality result, i.e., transversality of moduli spaces with a pseudo-manifold
representative of a homology class in the target space V. As we men-
tioned in section 1, every homology class can be represented by a
pseudo-submanifold. Now 1t is the time to give a precise definition.

Definition 5.1. A dimension-n finite simplical complex P is called
an abstract pseudo-manifold if P,., = P — P,_, ((n — 2)-skeleton) is
an open smooth oriented n-dimensional manifold. P is called an ab-
stract pseudo-manifold with boundary if F,., is a n-dimensional ori-
ented smooth manifold with boundary 8F,.,. Let 9P = —8?,;. Then
0P N P,_, is a subcomplex of dimension less than or equal to n — 3.
A pseudo-submanifold is a pair (P, f), where P is an abstract pseudo-
manifold, and f : P — V is a piece-wise linear map (PL) with respect
to some triangulation of V' such that f is smooth over P,.,. A pseudo-
submanifold cobordism between pseudo-submanifolds (P, f), (Q,h) isa
pair (K, H) such that K is an abstract pseudo-manifold with boundary
with 0K = PU—Q, and H is PL with respect to some triangulation of
V and smooth over K,., with H|py_g = f U —h, where — means the
opposite orientation.

Furthermore, we have the following lemma on transversality.

Lemma 5.2. Let (P, f) be a pseudo-submanifold representative of
a homology class o, and h; : X; — V be smooth maps from smooth
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manifolds X;. Then, there is a small perturbation f : P — V such that
f is transverse to each h;, i.e., f is transverse to h; as a PL map and
transverse over P,., as a smooth map.

Proof. This lemma is the consequence of standard transversality
results in PL topology [18), [12).

Let {(U;, Li)}izy, {(W;, M;)}4, be pseudo-submanifolds. Let X =
{z1,...,z.} be a set of marked points on . We consider the evaluation
map

€(=,X,J,v) S HLz X HM] : MA(Z,J, V) X (Z)d X HU,, X HW]
i J

(5.1) R /2 VS e
e(E,X,J,u)(fa Yi,--- 3yd) = (f(zl)a ey f(zc)’f(y1)7 o 1f(yd))
Let Ax be the diagonal {(zy,--* , Zeyd> 21, "+ ; 2c4a)} C Ve x Vetd,

Write U = [[,U;, W = [[;W; and L = [[L;, M = [[ M. Then,
(f,-+) € (e, x,00) X L x M)~ (Ax) if and only if f(z;) € Im(L;),
f(Z) nIm(M;) # 0. For simplicity, we write ez x ;,,(L x M) for
(e x,00) X L x M)"'(Ax). Similarly, if {(Jt,ut)ﬁ is a path, we can
define

(e, x,{domhy) X L X M : UMA(Z,Jt,I/t) x{t} x () xUxW
_t__) Vc+d X Vc+d_
Put
e xigm (L X M) = (e x,15.mp) X L x M)7H(Ax).

Theorem 5.3. For a generic (J,v), we can choose L, M such that
e(_zl,x,J,,,) (L x M) is a smooth manifold. For a generic path {J;,v;}, we
con choose L, M such that e(_zl,x,{J,,w}) (L x M) is a smooth cobordant.

This theorem obviously follows from Lemma 5.2.

Let C = (8,2, -+ ,z.) be a stable curve, and X = {z,,--- ,z.}
is the set of marked points. Now we want to consider the set of
f € Mx(D,J,v) = Mg(D,J,v), where D, D are as in section 4,
such that f(z;) € Im(L;) and f(X)NIm(A;) # 0. As we showed in last
section, Nz(D, J,v) is a smooth manifold for a generic (J,v). There-
fore, we shall use Nx(D,J,v) instead of Mgz (D, J,v) to formularize
transversaltity theorem. To do this, we also need an additional data
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which is the intersection pattern T of components of f with Im(M;).
Without loss of generality, suppose that Im(M;), - ,Im(M,) intersect
principal components and the rest intersect bubble components. - Fur-
thermore, suppose that M, (1 < s < p) intersects P;,-component and
M, (s > p) intersects B, -component. If M; intersects more than two
components, we simply choose one of them. Then we can define

P
exr X L X M : No(D,J,v)x [[ B, xge-r (S2)4P x U x W
s:_l) Vc+d X Vc+d'

Note that G = PSL,C. Let Ay C Vetd x Vetd be the “diagonal”
corresponding to the intersection pattern T (cf. section 4). Define

e(_Dl,J,u,X’,T)(L X M) == (eX,T x L % M)—l (AT)
Then, f(z;) € Im(L;),andIm(f) N Im(M;) # 0 implies that
e(_é,J,u,X’,T) (L x M) # 0.

Similarly, we can define e(; ¢}, ,,3 x.1) (L M).
Theorem 5.4. For a generic (J,v), we can choose L, M such that
€n.gux )L X M) is a smooth manifold of dimension

dim Ng(D, J,v) + 2d — codim(L) — codim(M)
<2C(V)(A) +2n(1 — g) — 2 — 2sp + 2d — codim(L) — codim(M),

where sp is the number of marked points which are bubbling points.
For a generic path, for any D € Dfl’;: and X', T we can choose L, M
such that {J;,v:}, €p (1, 0.y,x .1y (L X M) is a smooth cobordant of one
dimensional higher.

The proof follows from Lemma 5.2

Definition 5.5. When Theorem 5.4 holds, we say that Ns(D, J,v)
(resp. U; Nx(D, J;,v4)) is transversal to L x M for X,T.

Proof of Proposition 2.2. We will adopt the notation in section 2.
We fix a generic (J,v). First we prove Proposition 2.2,(ii). If Proposi-
tion 2.2,(ii) fails, by the compactness theorem (Proposition 3.1), there
is a sectional cusp curve f in Mx(D, J,v) for some D € Di’fg; satisfy-
ing: (1) f;(Z)NIm(G;) #0 (1 < j <1); (2) for each marked point z;
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(1 < i < k), either fi(z;) € Im(F;), or a bubble occurs at z;, in this
case, f(z;) may not be in Im(F;), but Im(F;) will intersect the bubble
tree coming out of z;. Note that Im(G;) may intersect a bubble tree in-
stead of the principal component f(X). Therefore, we should view that
f has few marked points and the number of homology classes corre-
sponding to unmarked part of mixed invariant increases. Let X' C X
be a subset of marked points which are not a bubbling point. Sup-
pose that X’ has p many points, say z;, -+ ,z,. Thenl+ k —p is the
number of homology classes which intersect with Im(f). Let U; C Y;
and W; C Z; be the smooth submanifolds (possibly non-compact) such
that f(z;) € F;(U;) for 1 <1 < p, Im(f) N F;(U;) # 0 for i > p, and
Im(f) N G;(Z;) # 0. Suppose that f intersects those manifolds in the
intersection pattern 7I'. As we discussed before, it implies

6(_5,J,V,X’,T)(F|Hi u:x[], W,-) # 0.

On the other hand, by Theorem 5.4, if (J,v) is generic, we can choose
F such that e, ;, x 1(F) is a smooth manifold of dimension

dimNs(D, J,v) + 2(1 + k — p)) — codim(H U;) — codim(H W;)
<2C,(V)(A)+2n(1l—g)—2—2(k —ps +2(l+k—-p) a codim(P)
< -2

Hence, e('g‘J’V,X,’T)(FlHi uix]], w;) = 0. This is a contradiction. So
(ii) is proved. Moreover, if f is in M4(2, J,v), f(z;) € F;(U;) and
Im(f) N G;(Z;) # 0 for all 4, 7, then the above arguments also show
that U; is an open stratum of Y;, and W; is an open stratum of Z;.
Thus Proposition 2.2 follows from Theorem 5.4, since ¥ is compact.

The same arguments as above also yield the following generalization
of Proposition 2.2.

Proposition 5.6. Let C = (X,z1,--- ,Zx) be a k-point genus g
stable curve, and (Y;, F}), (Z;,G;) be in (2.5) satisfying (2.3). Then all
properties stated in Proposition 2.2 still hold.

Let (P, F) be as in (2.5). For simplicity, we denote by |eig x5, (F)!
the algebraic sum of elements in e(“EI, x,7,) (F), where the sign of a f in
e(_zl’ x,7,0)(F) is assigned according to the orientations of M4(Z, J,v) x
(2), P, Viyr at (f;%s1,- - ,ya), €tc., and the Jacobians of the maps
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es,x,7) and F. Now we divide the proof of Proposition 2.3 into a
series of lemmas:
Lemma 5.7. Let (J',v') be another generic pair. Then

|e(_El,X,J,V) (F)| = |e(_)§,l,J’,V’)(F)I'

Proof. Choose a generic path (J;,v;) connecting (J,v) to (J',v'),
such that
MA(E, {Jt, Vt}) = U MA(E, Jt, l/t) X {t}
t

is a smooth, oriented cobordism between M4 (X, J,v) and M (2, J',v').
Consider an evaluation map

e X, gm}) : Ma(Z {Jr, mi}) x (B) = V!
e(E’X’{J""‘})(-f’mh s Tey Y1, 7yl) = (f(ml)a tee af(yl))

By Theorem 5.4, we may assume that ez x (J,,,}) is transversal to F,
and Nx(D, {J;,v;}) is transversal to F for any X', T, where X' C X,
and

Ns(D, {3, 1}) = UNpsew) * {t}
t

is a smooth, oriented cobordism for a generic path {J;,v;}. A dimension
counting shows that e, (5. ..y x/.(F) = 0 for any X', T. Since the
singular set of P is of codimension at least 2, Im(e x,(J,,,})) does
not intersect the restriction of F to lower stratum of P. Therefore,
e('21’X, ( Jt,w})(F) is an oriented, smooth compact 1-manifold. Clearly,
the boundary

3(6(—>:l,x,{J,,u,})(F)) = e(_El,X,J,V) U e(): x,000) (F),s

where “—” means opposite orientation. Then the lemma follows.

Lemma 5.8. |e(‘21,X,J,V) (F)| is independent of the complez structure
on 2.

Proof. The proof is exactly the same as that of Lemma 5.7.

Lemma 5.9. |e(_21,X’J,V)(F)| is independent of the representative
P F.

Proof. Suppose that (P’, F') be another representative. There is a
cobordism (@, H) such that

Q) =P|J—-P, Hlaq = F|J-F.
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We can choose a generic (J, v) and F such that ez x,1,,) and N5 (D, J,v)
is transverse to F, F' and H for any D, X' C X,T. Then, a dimension
counting argument will show that

(€3 suxrmy) Q) = 0.

Furthermore, the same argument as before will prove that
e (2, X, J,v)(Q) is an oriented, smooth, compact 1-manifold with

boundary
e ' (5, X, Lv)(F)J -2, X, J,v)(F).

Hence, |e(_>:l,x,J,.,) (F)| = |e(_>:l,x,1,u) (F")|-

Lemma 5.10. le(_zl,x,J,,,) (F)| is independent of the set X of marked
points.

Proof. Let X' be another set of marked points. Choose a diffeomor-
phism ¢ : ¥ — ¥ such that ¢ is isotopic to the identity and map X to
X'. Let ¥ = ¢*%. Then, ‘e(—El,X’,J,V)(F)I = lew x,7.,)(F)|. Therefore,
this lemma follows from Lemma 5.8.

Lemma 5.11. @4, 0)(0u, - ,ai|b1, -, B) is independent of semi-
positive symplectic deformation.

Proof. This is obvious, since (J,v) does not depend on the sym-
plectic form w as long as it is w-tamed, and the tamedness is an open
condition.

Next, we prove a technical result about the transversality of compo-
nent of cusp curves, which is important in the gluing argument of next
section. In this case, there are no bubble components. Then we have
a (J,v)-perturbed holomorphic map from X into V' such that its com-
ponents intersect each other at distinguished points. We would like to
show that the subset where two components intersect nontransversally
is of codimension 2. Without loss of generality, we can assume that P,
intersects P,, and z{, 27 are distinguished points on P;, P, correspond-
ing to the intersection. If it is a self-intersection, we just let P, = P.
Then we can define

€21,z t Ma(Z, J,v) - Hom(T,, %,,,TV) @ Hom(T,,%,,,TV),

where e, ., = dfi(z) @ df:(z;) for fi € Mp(X1,J,11) and f, €
M[Pz](22a J, V2)'

A generic element in Hom(T}, ¥,,, TV) @ Hom(T,,%,,, TV'), which is
a smooth fibration over V and of dimension 10n, has maximal rank 4.
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If fi, fo does not intersect tranversally, then its image will have lower
rank. The set of homomorphisms of lower ranks is a union of smooth
submanifolds consisting of homomorphisms of rank 0 ( which is the zero
section), 1, 2, 3. Let us denote them by R, R;, R,, R3, each of which
is a fibration over V. They have dimensions 2n,4n + 3,6n + 2,8n + 1.
Thus their codimensions are 8n,6n — 3,4n — 2,2n — 1.

Theorem 5.12. For a generic (J,v), e, ., s transversal to
Ro, Ry, Ry, Rs. Hence, €}, (R;) for i < 3 have codimension at least
2n —1. For generic (J,v) and (J,v'), there is a path {J,v;} connecting
(J,v) and (J,V') such that

el .. | UMa(Z, 1) x {t} = Hom(T;, %, TV) @ Hom(T.,%,, TV)
t

21,22

t

L ) H(R:) is a smooth cobordism of one

is transversal to R;. Hence (e
dimension higher.

Proof. First of all, we can define

Ezl,zz : le (EI,J, 1/1) X e X Hpm(22,J, I/k)
— Hom(T,%,,TV) @ Hom(T,%,,TV)

in the same way as we did in the proof of Lemma 4.9. We claim that
E,, ., is a submersion onto its image. Let a € Hom(T,,%,,TV) &
Hom(T,,%,,T,,V) be in the image of E,, ,, and a = a; @ a,, where
a; : T,,%, — T,V. Locally, we can always choose f{ on a small
neighborhood D(z;) of z; such that

£ = fi, fi(z) = v, d(dle—izq))ltzo = A;.

We can patch f} with filz, _p(.) to get a globally defined f{. Then
[1(ff,ve) € THp (2, J,v:) and (e, ., (T1(f},4)))|e=o = a. It implies
that E,, ., is transversal to Ry, R;, Ry, R, whose preimage is a Banach
submanifold. By the Sards-Smale theory, for a generic v, e}, (R;) are
smooth manifolds of codimension 8n,6n — 3,4n — 2,2n — 1. The proof
of the second part is the exactly the same.

6. Gluing J-holomorphic maps

In this section, We will apply the Implicit Function Theorem to
study the deformation theory of perturbed holomorphic maps from a
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singular curve. For this purpose, we have to estimate spectrum of
certain linear elliptic operators. Unlike the case of Floer homology,
the lowest eigenvalue is not uniformly bounded away from zero. This
causes difficulties in proving injectivity and, in particular, surjectivity
of the deformation map. In this section, we call k-point stable curves
Deligne-Mumford stable curves (cf. section 4). As before, we denote
by J a generic, w-tamed almost complex structure on V, and by v a
generic inhomogeneous term on ¥ x V.

We recall a degeneration of stable curves is a holomorphic fibra-
tion 7 : S —» A C C with sections oy,--- ,04 satisfying: (1) for
t € A and t # 0, the fiber &, = 7~'(t) is smooth; (2) for each ¢,
(3¢;01(2),- -+ ,0k(t)) is a Deligne-Mumford stable curve. We fix an
inhomogeneous term v on S x V. This is simply a smooth anti-(J, Js)-
linear section of the vector bundle Hom(7'S,TV) over § x V. Note that
any inhomogeneous term on ¥, X V' can be extented to § x V.

Consider the moduli space of (J,v;)-perturbed holomorphic maps

(6.1) Ma(Zs, Jyvy) ={f S, >V |df +J-df - ju, = 11, fo25: = A},

where v; is the restriction of v to Z;, and A is a fixed homology class
in Hy(V, Z).

By the discussions in section 4, the moduli space M 4(Zy, J,14) is a
smooth manifold. From the Riemann-Roch Theorem it follows that for
a generic (J,v), we have

dimMA(Et, J, I/t) = 201(V) LA + 2n(1 - g(Et)),

where 2n is the real dimension of V', and g(Z;) is the genus of ¥,. By the
Transversality Theorem in section 3, we may choose a pair (J,v) such
that M (2, J,v) is smooth, i.e., any f in M4(Zy, J,v) is a regular
(J, vo)-perturbed holomorphic map.

Theorem 6.1. Let f, be any map in Mu(5o,J,v5). Then there is
a continuous family of injective maps Ty from W into Ma(Z,, J,v),
where t is small and W is a neighborhood of fo in Ma(Ze, J,1n), such
that (1) for any f in W, as t goes to zero, Ty(f) converges to f in
C°-topology on Iy and in C3-topology outside the singular set of Zo;
(2) there are €,8 > 0 satisfying : if f' is in Ma(%, J,v;) and

dv(f'(z), fo(y)) <€, whenever z € &,
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where dy, ds are the distance functions of a J-invariant metric hy on
V and a Js-invariant metric hs on S, then f' is in Ty(W). Moreover,
for each t, T is an orientation-preserving smooth map from W into

MA(Eta J7 Vt)'
Before we prove this theorem, we give one corollary of it. Let
0y, ,Qk,P1,+ , 0 be pseudo-submanifolds in V' representing inte-

gral homology classes. Each «; or §; is the image of a simplicial com-
plex under a piecewise smooth map. We denote by «; or §; the regular
part of o; or 3;. We assume

i(Zn —dime;) + zl:(Qn —2—-dimg;) =2C,(V) - A+ 2n(1 — g(%,)).

i=1 j=1
Define the evaluation map

evy : My(Se, J,1n) x Bl VE x VY,

evt(f§yl;"' ’yl) = (f(gl(t))7"' 7f(ak(t))’f(yl)1"' >f(yl))'

Note that M 4(%;, J,1;) has a canonical orientation (cf. section 1). If
the image Im(ev,) intersects the product [T~_, o} x ngl B; transversally
at a point (f;y1,- - ,u), then we can assign a sign to (f;y1, - ,y) by
using the orientations on M 4(y,J,1;) x T, V* x V! and []5, o} x
[T ;-

By the discussions in sections 3-5, we have known that for a generic
(J,v), the map ev, intersects Hf=1 of X ngl B; transversally at finitely
many points in M (2o, J,v0) x 5. Let (fo;vo1,--- ,Yor) be one such
intersection point.

Corollary 6.1. Let (J,v) be generic and (fo,yo1, - ,Yo) be as
above. Then there are €,6 > 0 such that for t sufficiently small, there
is a unique point (fi; Y, - ,Yu) in the space M (S, J,v;) x Tt sat-
isfying: (1) ds(yij,Yo;) < €, where 1 < j < 1; (2) fi(o:(t)) € o}, where
1 <1 <k;(3) dv(fi(z), fo(y)) < € whenever ds(z,y) < §. Moreover,
the sign associated to (fi;yu, - ,yu) s the same as the sign associated
to (fo;Yor," "+ »Yor)-

The rest of this section is devoted to the proof of Theorem 6.1.

First we make a reduction as we did in section 3. Put W = § x V.
As in section 3, one can define a tamed almost complex structure Jy
on W as follows: any tangent vector on W is of the form (u,v), where u



310 YONGBIN RUAN & GANG TIAN

isin TS and v isin TV, and Jy (u,v) = (Js(u), J(v) +v(Js(u))). Then
any map f; in Ma(%;, J, ;) can be converted into a Jy-holomorphic
map F; into by assigning z in X, to (z, fi(z)) in W. Let 7, be the
projection from W onto its m®* factor. Then m; - F; is an identity.
Conversely, if we have a Jy-holomorphic map F; into W such that
7 - F; is a biholomorphism, then f; = 7y - F; - (m - Fy)™' is a (J,1;)-
perturbed holomorphic map f;. On the other hand, if F; comes from a
(J, 9)-perturbed holomorphic map fy, and F; is a deformation of Fp,
then 7, - F; is indeed a biholomorphism. Therefore, we may assume that
v = 0 and J is generic. Note that although W may be noncompact,
the objects under study lie in a compact region.

In the following proof of Theorem 6.1, we will always use C to denote
a uniform constant independent of ¢ and f near f,. The actual value
of C may vary in different places.

Let f be a J-holomorphic map from X, into V and is very close to
fo- We will first construct an approximated J-holomorphic map from
¥; into V for each small t. Let p be any double point of ¥, and U,
be a small neighborhood. We may assume that U, is in a coordinate
chart. Choose local coordinates zy,, 25, of S near p such that

(62) Up M Et = {lez2p = t| |21p|, lZzp| < 1}
There is a coordinate system (yi,... ,y2,) of V near f(p), such that
J() = 5 + O,

Byi OYn i

(6.3)

J( - )=—aiyi+(9(|y|), i=1’27'--7n>

OYn i

where |y| = /32" |y;]2. There are two connected components in U, N
EO:

Upl = {ZQp = 0||21p| < 1}, and Up2 = {le = O||z2p| < 1}

Let fp1, fp2 be the restrictions of f to Uy, Upe. Then we have the
following expansions:

(6.4) foi(2ip) = foi(2ip) + higher order terms ,

where fp,- is a homogeneous polynomial in z;,. We identify a neigh-
borhood of f(p) in V' with an open subset in C" by putting w; =
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yi + V—1yp4s (i = 1,2,...n). By Theorem 5.10, we can assume that
fo1 and f,, intersect at p transversally. Then by choosing y;,--- ,yon
properly, we have

In (zlp) = (zlp,O’O’ o, 0) + 0(|21p|2) eC”,

(65) fp2(z2p) = (07 22ps 0, ot 10) + 0(|z2p|2) € Cn

By changing local coordinates y1, ... ys,, we may further assume

fpl(zlp) = (Z1p,0,0, e, 0),
(6.6) fp2(z2p) = (072211’0" ot aO)-

We can construct an approximated J-holomorphic map ft 5=V
for each £ small as follows: Let ¢; be a smooth family of diffeomorphisms
~ from Xf, where ¥ is the nonsingular part of %, into %, such that
¢p = id and

(6.7) |6 = idllcsmo\vy < Curlt]

for any small neighborhood U’ of the singular set Sing(3,) in Xy, where
Cy is a constant depending only on U’, and the norm is taken with
respect to the fixed metric hg on §. Note that in (6.7), both ¢ and 1d
are considered as maps into S. Then for any p in Sing(%,), we have

(6.8) ||f|2mU,, - ];|>:oﬁUp : ¢;1“C4(Egﬂ{%$|24p|_<_1,i:l or 23 < Clt|,

where f is the map: (21p, 22) € U, = (21, 22,0, - .. ,0) € V. In this
section, C always denotes a constant independent of ¢. Since

(69) ‘ﬂUpl = fpl 3 flUpg = fp2a
by (6.8), there is a homotopy F; on

1
z:tm(p U {§§]zip|§1,z'=lor2})

€Sing(%s)

satisfying:

(6.10) IF: = flzonw, - ¢t_1||C4(E,r‘1{%§|z,-p|$1,i:1 or 2p < Clt|,
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z 1 7
(611) Ft = legﬁUp on Zt M {5 S ]zipl S i'd,?, =1]1or 2},

N 9 ,
(6.12)  F, = flsenu, - ;" on LN {E <z <1,4=1 or 2}.

We define f,(z) = f - ¢;7*(z) for X outside Upesing(so) Up» and

o1
ht(zlpaz2p) ]f § S lzlpl S 1,
3 . 1 1
(6.13)  fi(z1p, 22p) = < (21py 22,0, ... ,0) if |21, < 3 |22 < 2
1
he(21p, 22p) if 3 < |zgp) < 1.

Then f; is a well-defined map on %, and close to a J-holomorphic map
on Y. To examine the asymptotic behavior of f: more closely, we need
to introduce metrics on ;. Let u be a Kéhler metric on S which is flat
in each U,. If 2y, 22, are the local coordinates chosen above, then for
t small,

i

(6.14) p=(1+ Ndzip)*Ze N U, i =1,2.

|zip|4
Let p be a smooth function on S\ Sing(%,) satisfying:
0<pl <3,

6.15)
( Plos (21 229) = /gl + 22 .

Clearly, p?(21p, 22p) = |2ip|*(1 + I—z%) on 3, NU, for i = 1,2. Define

(6.16) He = p_zlj"

Then for ¢ small, the metric u.|s, is cylinder-like near each p. The
following lemma can be easily proved by using (6.7)-(6.16).

Lemma 6.1. We denote by D the covariant derivature of u, and by
D, the covariant derivative of u.. Then for 1 <k <5,

K F |¢]
(6.17) ID*Fl(2) < Ci (1 + p——-—(x)kﬂ),
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or
(6.19 D87 @) < €L (pla) + S).

p(z)
where |- |, |- |.. denote the norms with respect to u, u., and Cy,C;, are

constants depending only on the integer k > 0.
Let J ~be the standard complex structure on C™. Near each double
point p, f; is Jo-holomorphic on ¥, N {|z;,| < 1, i = 1,2}, ie.,

dfs+ Jo-dfs-jo=0 on %N {|z] < :,12—2 — 1,2,
where j; = jx,. Put
(6.19) v(z) = (dfy + J - dfy - o) ().
Then in B, N {|2;p| < 3,2 =1,2},
(6.20) w(z) = (J = Jo) - df - ().

Since f is J-holomorphic on g N {|2;,] < 1, i=1,2}, we have

0 0
J(zlpaoa"' ’0)(821 ): Jﬂ(zlpvo)"' ’0)(821 )
p P
d
an a a
J(OazZpa"' ,0)(822 ):J(O)ZZW'" ,0)(822 )
P P

Thus we can derive from last lemma,
Lemma 6.2. For 1 < k < 4, there are constants Ci,C;, > 0 such
that

1t
(6.21) 'Dkvtlu(m) < Gy p(z)F+1
or
(6.22) |Dvela. () < Ciltl.

We want to perturb f; into a J-holomorphic map from 33; into V.
Let exp be the exponential map of the Hermitian metric hy on V. Let



314 YONGBIN RUAN & GANG TIAN

f+ be a map from ¥, into V. If this map is sufficiently close to f, then
we can write

(6.23) fi(@) = expj oy (ulfi(2))),

where u is a vector field of f?TV on X,. We need to find a vector field
u such that f; is J-holomorphic.

Let V be the Levi-Civita connection of Ay. Since J may not be
integrable, V needs not to be J-linear, but we can construct a J-linear
connection V” from it as follows:

(6.24) VX = %(vx _JV(JIX)), X €TV.

Obviously, V/(JX) = J(V'X), i.e., V/J = 0. For any vector field u of
f¢TV on X, we denote by m,(u, z) the parallel transport from T, )V to
Ty, )V with respect to V7 along the path { exp (s u(f:(z)))}o<s<t,
where f; is defined in (6.23). Since V" is J-linear, we have

(6'25) J(ft(x)) ' "Tt('u’ax) = 7"’t(uax) : J(ft(x))
Let A%1( ft*TV) be the bundle over X; of all anti-(J, j;)-linear homo-
morphisms from TE; into f}TV, i.e.,

N TV),

(6.26) =~ {0 € Hom(T, Sy, (F¥TV).) | J(fi(2)) -6 = —6 -jt(:c)} :

We will use I'(A% (FrTV)) and [(f}TV) to denote the spaces of the
sections of A% (f#TV) and of f;TV over ;. Define

&, : T(fyTV) = D(AYY(fITV)),

(6.27) u — m(u,-) - (dfy + J - dfy - 5t)-

Note that the image of ®, is indeed in T'(A%!(fTV)), since for any
w e Ta:Eta

@4(u) (js(w)) = 7 (w, ) - (dfy - Go(w) + +T(f(2)) (£ (5} (w))))
= _J(Jit(x)) - my(u, x) - (J(fe(z)) - dfy - Ge(w) + df(w)
= —J(fi(z)) - ®¢(u)(w).



A MATHEMATICAL THEORY OF QUANTUM COHOMOLOGY 315

We put
(6.28) Li(0) = D®4(0) o).

Lemma 6.3. For any o € T(f;TV),w € T(TL,), we have
(629) Ly(0)(w) = Voo + IV5u0 + 1 {(Vod)(Gew) — J(VoT) ()} .

Here we identify T(f}TV) with T(f:(2:), TV), so we may consider V
a covariant derivative on I(f;TV).
Proof. Define a map f:[0,1] x ; —» V by

f(s,2) = exp f,iy (s 0 (fo(2)))-

Then f(0,2) = f,(z) and %sf(O,:z) = o(fy(z)). Using the fact that
m(s0, ) is the parallel transport of V* along the path {f(s’, z) bo<s <ss
we can compute

Lu(o)(w) = B(I’g(s”) |s—o(w)

(6.30) — Tim ~{m,(s0,)(f (s,-) + Jdf (s, )ss}

= VI(f, () + TV (Gow)).

(w)] = £u[£,w] = 0, we derive

Since [0, f.(w)] = [f*(gg)a

*

V7 f(w) = %(Vufl(w) — IV, (TF.(w)))

(6:31) = Ve = o) e () = Vo ()

- Vo — %J(V,,J) (w).

Similarly,
y 1 ,
VI (Gew) = Va0 = 5TV d) ).

Thus (6.29) follows from this, (6.30) and (6.31).
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Let L} : T(A%'(f;TV)) = ['(f;TV) be the adjoint of L, with respect
to the Hermitian metric Ay on V and the metric p. on ¥;.

Lemma 6.4. Assume that (-,-) is the induced metric on ffTV by
hy. For any section & in D(A®Y(fFTV)),

L;(§) = —2V.({(e)) — 2V, (£(4:€)) + (£(e), (V) (5ee))”
—(£(ee), (VI)(e))",

where {e, j:e} is any local unitary basis of TX, with respect to p., and
(X, VY)* is the vector field in f}TV defined by

<<Xa VY>*7 Z) = <Xa v2Y>7

where X,Y,Z € f+TV.

Proof. Fix a local unitary basis {e, j;e} of TY;, for convenience, we
write e; = e, e; = jie. Let {e},e;} be the dual basis of {e1,e,},. Then
e; = —jiel. Write

E=tbie] + 66}, G EFITV, i=1,2.
Since £ is anti-(J, j;)-linear, we have

§2 = "—J§17
SO
§=&el — (J&)es

Let o be a section of ft*TV with support in a small open subset.

We denote by (-,-),. the induced metric on A% (fTV) by hy and p,.
Then

| @migo)due = [ (€ Lio)ndn.
= [ (&, Le(@)en)) + (6o, (o))

= 2/ (&1, Veo + IV, .0 + %(V,,J)(jte) - %J(V,,J)(e))d,uc
p

=23 [ (Vebi) = {60 (V) Geed)ae

Thus the lemma follows.
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Remark. If ¢ is a section in T(A®!(f;TV)) and r(p) is a positive
function in p, then

2
ZVJ 61,) Z VJ 52 d,u'c
1

i= i=1

r(p)* (V] & + V] 62 el§1+VJ &2)dpse

T
-
—~
‘c

-

Il

Il

r(p)? (JVJ —JV5LE, IV & — IV &)du.

(p)
(0)
r(p)* (V] &2 — V5,81, Vi, & — Vi, &) dpe
(p)
(p)

3

r(p)® (< &2 eJl§2> + (ngfl’ V;I251> - 2(Vi§1 ) Vi&)) dp.
T\p 2 (< 52, glfz> (V; vy 51, VJ §1> - 2<VeJl§1’ ngf2>

- 2(515 (vngvJ VJ VJ )§2>) d/‘c

+4/E 7(p) (Vel'r (&, 32§2> ~Ve,r {1, Vi&)) dise,

t

o

-

which implies that

| e Vi, o Vigadu.

=3 [ (o7 (9°€P - 26, 192, V2,162

2 Js,
+2 /E r(0) (Var (€, V26) — Ver(€y, V2. 6)) dite.

Both V — V7 and [V, , V] ] are zero-order operators, the coefficients
of which depend only on the curvature tensor of hy, ., the almost
complex structure J and the gradient of the map f,. Therefore,

(6.32)

| rerPILiePau. 2 [ r(ey Vel due
Et Et
—C [ (rloy FE J¢
P}

t

2 2)¢)2
2+ (O)IEL, ) dise-
We will apply the Implicit Function Theorem to construct the map
T;. First we need to estimate the lower bound of the spectrum of
Dt = LtL:

Lemma 6.5. Let D be a disk in Cand p, be the cylindrical metric
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on D\{0}, i.e., . = Jmlz— Suppose that fp : D — V is a J-holomorphic

map, and & is a C*-smooth section of A" (fHTV) over D\{0} satisfy-
ng:

(6.33) L;¢ =0 on D\{0},
where Lj be the adjoint of Ly with respect to p., and

(6:34) [y (V€ + 12F1EF) dise < o

Then the limit lir%f(z) exists and is a vector in Ty, )V . Such a limit
z—

is called residue of € at 2 = 0.
Proof.  Without loss of generality, we may identify f;TV with
D x B*. The almost complex structure J on V becomes a family of

complex structures J(z) on K", parametrized by z in D. Put 7 =
—log|z|. Then

pe = dr* + do>.
By Lemma 6.4,
a¢! a¢! —rlely _
(6.35) Ly¢ = —25; —2J—= 20 +07E) =0
where & = £1dT + £2d0, €2 = —J¢. Thus
9 (1 [ .
(6.36) —~ (5/0 §d9) — O(eIe)).

Put £ =¢— i foz’r &df. By the Poincaré inequality on the unit circle,
we have
7 vep do > T 2araos [T iR a0

| ek [ zdpae > [ iEgas,

From (6.35) and (6.36) it follows that
. 27
Lié= 0| [ ga).

By the standard elliptic estimates, one can show

swp (€00 <0 [ [T (8 v i) dras
(637) 0<o<2m |7 —7|<1
< 0/I ) |<1/ (IVE[ + e |¢?) dr'df,
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where C denotes a uniform constant. Together with (6.34), this implies
that £(7,8) converges to zero as 7 goes to infinity. Integrating equation
(6. 36) we obtain that

o [ emd -5 [T eto,0=0([ el 1ar,

7o

so that - 0 " ¢df converges to a vector in Ty, V. Hence the lemma
is proved

Recall that Lg is the linearization of the Cauchy-Riemann equation
at fo, and L§ is the adjoint of Ly on 3o\ Sing(X,), where Sing(2,) is
the set of nodes in ¥,. We denote by Ker(Lj) the set of those sections
€ of A% f2TV over ¥\ Sing(X,) satisfying:

(6.35) L (V€. + #21€F") due < o0,

and for every node p in Sing(%,), if U, is any small neighborhood of p
with two irreducible components Uy, Uy, then
(6.39) lim &(z) + lim &(z) = 0,
z€UR1 z€Upa

namely, the two residues of £ at p sum up to zero.

Proposition 6.1. For a generic pair (J,v), Ker(L§) is trivial.

Proof. The proof is simply an application of the Sard-Smale
Transversality Theorem. We will outline a proof here. Let X¢; (1 <1 <
k ) be the irreducible components of Xy, and /; be the number of nodes
in ¥g;. Then ZLI l; is twice of the number [ of nodes in ;. Without
loss of generality, we may assume that C;(V)(fo.(Ze;)) +n{l—g:) —lin
is nonnegative for 7 < %’ and negative for s > k', where 1 < k' < k
and g; is the genus of Xo;. Put 5§, = X;\ Sing(X%,), and Lg; = Lg|ss..
Define two spaces

Hy (58 A S5 TV)
= (T GTV [ (Ve + #) dne < o0},

LS8, [TV) = fu € DTV [ P < )

Then Lj is a Fredholm map from H(X3,A%f;TV) into
L2(58,, fTV). By Lemma 6.5, one can compute the index of L;:

(640)  Tmd(Ly) = —2Ci(V)(for(Sos)) — 2n(1 — gi) + 2Uin.
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Therefore, Ind(Lg;) < 0 for 4 < &' and Ind(Lg;) > 0 for i > k'. Using
the Sard-Smale Transversality Theorem, one can show that for a generic
(J,v), Ker(L3;) is trivial for 2 < k' and of real dimension Ind(Lg,;) for
t > k'. It follows

dim (H Ker(L ))

- Z 2C’I V) fO*(ZOz)) - Zn(l - gl) + 2l; n)

>k’

(6.41)

On the other hand, since M 4(Xy, J, V) is nonempty for a generic (J, v),
we have

(6.42) > (201 (V) (fou (B0s)) + 2n(1 — g;) — lin) > 0,

i>k!

where [ is the number of nodes in ¥y;, which are not in any ¥, for

7 < k'. Clearly,
Z(li - l:) = Z L.

>k i<k’
Therefore, from (6.41) and (6.42) we deduce
k
(6.43) dim (H Ker(Ly,) ) > (2 — )n = 2In.
i=1 i>k!

Given each node p, let Xo;;) and Xy () be the two components of g
containing p. We assume that i(p) < i'(p). Define a residue map

k
Res: HKer(Lgi) = H Trm)V x TropV
i= pESing(Zo)

by Res(§) = Hp(li_r)111)§|20i(p),li_r)lzl,ﬂzo,.,(m). Then Res is a continuous
linear map. We also define a diagonal

A= H {('Uv —’U)l’l) € Tfo(P)V} H Tfo(P)V x Tfo(P)V‘

PESing(o) pESing(Lo)

Clearly, A is a linear subspace of real dimension 2In, and Ker(Lg) =
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Res™'(A). For a generic (J,v), the map Res is transversal to A, so

k
dimKer(Lj) <dim (H Ker(L;i)> +dim A

=1

~ dim ( I TrwV x Tfo(,,)v> <0.

p€ESing(Zo)

Hence the proposition is proved.

From now on, we will fix a generic (J, ~) such that Ker(L3) is trivial,
its existence is assured by Proposition 6.1.

Lemma 6.6. There is a constant ¢ > 0, independent of t, such that
for t sufficiently small, the first eigenvalue A\ (03;) of O, is bounded from
below by m.

Proof. We prove it by contradiction. We will always use C, ¢ to
denote uniform positive constants. Suppose that the lemma is not true.
Then without loss of generality, we may assume that (logt)?X;(0C;)
converges to zero as ¢ tends to zero. Let & be the eigenfunction of
A1 (O,) satisfying

(6.44) supléil, =1
Then

(6.45) [ ted. due < O(-1og )
and

(6.46) | ek due <0,

where p is the function defined in (6.15). Using 0§ = A (03;)¢;, we
deduce from (6.45),

6.47)  (log [{])? / \L26,2dpe = (log [¢)* M (0:) — 0 as ¢ — 0.
P

It follows from the definition of f, that

u(2), [Vdfy

pe(T)}

(6.48) max{|df;
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Therefore, replacing |df,|,. by Cp(z) in (6.32) and using (6.46), (6.47),

we obtain
(6.49) | Vet du<c

By using the standard elliptic estimates, from (6.44) and (6.49) one
can deduce

(6.50) sup Vi€, <C fori=0,1,2,3.

¢
Thus by taking a subsequence if necessary, we may assume that &
converges to a smooth section &, of A®(f*T'V') over I\ Sing(Zo), sat-
isfying L3¢ = 0 and

L (ve

In order to derive a contradiction, we will show that &, is a nonzero
section in Ker(Lg). Note that at this moment, we do not even know if &,
is nonzero. Let p be a given node of Ty, and Ups = {|21,| < 6, |29p| < 8}
for § > 0. On X, NU,;, we can choose z = 21, as a local coordinate;
then 2|¢] < |z| < 3, and

2+ 0%6ol2, ) dpse < oo.

t 2
)71+ %f”dzf =dr? + d§?,

gz 1P
pe = (|2" + 12E
where 7 = —log 2| + % log |¢].

Without loss of generality, we may assume that f;TV is a trivial
bundle over ¥, N Up%. We define

1 27

(651) {t,ave(T) = E{_‘ | {t(T,g)dQ

Then for any s > 0,

i 1
%l_r,%ft,ave( 510g [t +s) = / £o(2,0)d0,

|z|=e—2

) 1
P_{%ét,a,ve("‘i 108|t| - S) = _/ 50(072:)(19

ol

(6.52)
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Put e; = ;—T, ey = ;% on X; N Upy. Then by Lemmas 6.3, 6.4,
82 82 -
(6'53) LtL*é‘t a 26 802 §t+O(IVdft He ft Idft Me vé‘tlu:)’

where O(A) denotes a quantity bounded by C A. By (6.15) and (6.48),
we have

ma.x{[dft ic,

2. Hz) S Clt(e7 +e7) on T, N Uy,

where = = (7,0). So from (6.53) and (6.50) it follows
* 82 a 2T —27
LiLi& = =258 — 226+ O(Jt|(e™ + e777)) = M (0h)4:-
8 a6
Integrating this over 8 € [0, 2x], yields

2

0
(654) ﬁgt,ave + A?ft,ave = a4,

where \; = 4/ 1\329—‘1 and a;(7) = O(Jt|(e*"+€7%7)). It is an easy exercise
in ODE to show that the solution of (6.54) is of the form

: _ T in(\ (7 —
(6.55)  &raue = {Ofsin(Erer + B} + /0 at(T)ﬂt()‘:—s))ds,
where of, (i are constants, |8;] < Z and ¢ = 1,--- ,2n. Since |7| <
—Llog|t] and A;(O;)(log |t])* — 0 as ¢ — 0, we have
| sin(A; (7 — s))| <jr—s|
At
and therefore
(6.56) |/ at(s)wdﬂ < Clt|e?!!
0 At
and
3 T Sln(At(’r - 8)) 2| |

. - — < T,

(6.57) 5 /O a(5) 25— ds| < Cltle

From (6.44), (6.56) it follows that |a} sin(+A,7 + ;)| < C for all 4, in
particular, |of sin 8| < C for all i. By taking a subsequence if necessary,
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we may assume that for each 4, a!sin 3! converges to v* as ¢ tends to
Z€ro.

Claim. For each i between 1 and 2n, ofsin(£X7 + 3) converges
uniformly to y* as t tends to zero, where |7| < —1log|t| — log2.

Proof.  There are two cases: (1) |8i| > ¢ > 0 for all ¢; (2) B,
converges to zero as ¢; tends to zero, where {¢;} is a subsequence of {¢}.
In the first case, |a}| < C. Since |7| < —log|¢|, by our assumption on
A1(3,), A T converges uniformly to zero, so o sin(£A;7 + 3}) converges
uniformly to y* as ¢ tends to zero.

Let us consider the second case. For simplicity, we assume that

{t,} = {t}. Put )
ét = £t - €t,ave-

Then

2r
£,(7,6)d8 = 0.

0
Using this and Lemma 6.4, we deduce

27
| Izzegas
(658) S . ]
= [ (L€l + &L + O + e El,) a8

and therefore, in consequence of (6.44),

(6.59) /I gl |Li&s ave|?dT < C (—/\tz log |¢| + \AE)
T|<—7log

On the other hand, by Lemma 6.4,

* a T —27
Lté‘t,ave = _z'gét,ave + O(Itl(ez +e 2 )lét I-lc)>
which together with (6.56), (6.57) and (6.59) yields
(ai))? / | cos(£X7 + B)|2dr
|T|<—3 log |t]
(6.60) / |— (o sin(£ A7 + BY)) |Pdr
|r|<—§ log |E] or

< ( A210g|t|+ﬁ)
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Since both A log|t| and B} converge to zero, (6.60) implies that
ot )\ log |t] converges uniformly to zero as ¢ tends to zero, so o sin(2= 7+
(%) converges uniformly to v'. Hence the claim is proved.

By using (6.52), (6.55) and (6.56), we can derive from the above
claim that for any s > 0,

[ 0w =gy o) = [ a0,

|z|=e—2

in particular, the two residues of £, at p sum up to zero. To prove that
&o 1s nonzero, we choose a node p for each ¢ such that

(6.61) sup [&| >c¢>0.
EgﬂUP%

We may assume that p is independent of ¢. From (6.58) it follows

/ |L:£t|icd:u’c
E,r\UP%

(6.62)
<c ( / 22(7, 0)|E.]2. dpte ~ M (O) log m) :
EgnUp%

where §~t =& — &t ave- By (6.32) and the Poincaré inequality on S*, we
derive from (6.62),

L
EtﬂUp%

< [ IVaE.du
EgﬂUP%

< [ é&E.dec+C
EtﬂUp%

2
e Qe

é:

2
R/

(6.63) 2N, 3\U, 1)

< c( [ A0k du— nO0)logle
EgﬂUP%

+ |€~t icdﬂc .
Etﬁ(Up%\Up})

If § = 0, then by (6.44), (6.63) and the above claim, the integral

27 2
o Jjr—mj<1 |é:1}.d7d0 converges to zero as t tends to zero, where |7o| <
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—>log|t| — log2. Applying the Mean-Value Inequality to L,L}¢ =
A1(8;)&;, we deduce that & converges to zero on U,y, which contradicts
to (6.61). Therefore, we obtain an nonzero section &, in Ker(Lj). This
is impossible! Hence the lemma is proved.

We denote by @, the map from I'(f;TV) into T(A%(f;TV)) defined
in (6.27). Define

(6.64) Ty (€) = :(L7E)-

To find a J-holomorphic map f; of the form (6.64), it suffices to show
that W,(¢) has a zero €. Let v; be given in (6.19). Then we can expand
U, (€) in £ as follows:

wt'(f) O) = Vg,
Ui(f, &) = ve + L, Ly (€) + Hi(€),

where H,(u,A{) = O()?) is the higher order term in £. We denote by
I llx,2 the C*3 - Holder norm on either D(A%! (fFTV)) or T'(f;TV) by
using the metrics Ay on V and pu, on X;, where k is any nonnegative
integer. Then we have

| He (&) — Hi(€)lo,a
< ¢ (IL;(&)lo,z
L7 (& — &)llv,z + L7 (€)1, 1 127 (& — €2)lo )
<C (”61“1,%“61 - 52”2,% + ||fz”2,§||51 - 52”1,%) )

(6.65)

(6.66)

and therefore, in consequence of Lemmas 6.1, 6.2,

(6.67) I fells,2 < C,
(6.68) lvells,z < CJ2l-
We define

(6:69)  THH(AY(fyTV)) = {€ € DA (ETV)) | elley < o0},
where k£ = 0,1,2,.... Clearly, from (6.64) - (6.69) it follows that

T, : T2 (AO(fTV)) = IO (AOL(FTV)).
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We recall that O, is the linear operator L,L; on I'(A%!( :t*TV)).
Lemma 6.7. Let ¢ be in T>3(f}TV) and ¢ be in T%3(f;TV). As-
sume

(6.70) 0, =¢ on L.

Then we have

(6.71) 1€]12,3 < C(—logt])2I¢llo,3-
Proof. First we remark

(6.72) Vol (X¢, ue) = C(—log t]),

which implies

(6.73) / &«

Multiplying both sides of the equation in (6.70) by &, integrating by
parts and using (6.73), we deduce

weite < Cl¢llo,o(—log [¢])-

[ st = [ (€Chucdie
pIN po
< Ol (~1og 1) ( [ ¢

2 ).

Together with Lemma 6.6, this implies

(6.74) [ 16l due < CICIE 4 (- 1og )"
Then (6.71) follows from (6.74) and the standard elliptic estimates (cf.
[7)-

Proposition 6.2. There is a to > 0 such that for any 0 < |t| < i,
there is a unique & € T>3 (A% f*TV) satisfying

(6.75) lells < /1l

and

(6.76) Ti(§) =0 on %,
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i.e., fi = expy,(L;€) is a J-holomorphic map from ¥, into V.
Proof. Let B_/(0) be the ball in I'23 (A% frTV) with radius /[t
and the center at the origin. Then ¥,(§) = 0 for some £ € B \/It—l(o) is

equivalent to
(6.77) £ =07 (v + Hi(9)),

where O;* is the inverse of [J;, which is from %3 (A% f*TV) into
I'23 (A% f2TV). By Lemma 6.2, 6.7, there is a constant C' > 0 such
that '

107 vella,y < C(=log )2 [lullo,z < Cltl(~log 1t))%,
| O7* (Hi(é1) — Hi(€2))ll2,2 < C(=log |t]) 2 [|Hy(é1) — Hi(62)lo 2
< O(=loglt) &, — &II%,, < C/lH(~log [t)ElIE — &las-

Thus the proposition follows from the Implicit Function Theorem.

Assume that f is a smooth point of M 4(%g, J,0). By the Transver-
sality Theorem in section 3, the tangent space of M4(%,J,0) at fo
is naturally identified with the kernel Ker(L,), where L, is defined in
(6.28), i.e., a tangent vector at f, is a continiuous section v in I'(f3T'V)
over Y, such that Lou = 0 on ;. This implies that there is a local
diffeomorphism from a neighborhood of 0 in Ker(L,) into M 4(Z,, J,0).

We choose W so small that it is contained in the image of such a dif-
feomorphism. We may assume that for any f and f' in W,

(6.78) ||f - f'||c4(>:o) < CHf - f’“C°(Eo)'

Given any f in W, there is a unique section 4 in I'( fgtTV) such
that

(6.79) F(z) = expy,, (o (Tias (for (2))) 7 € T
It follows from a straightforward computation:

(6.80) Vs (2) < CpP(a),

and for f, f' e W,

(6.81) Haaer — Gepllory < CIf = Flleoo)-
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We define Ty : W = M4 (%4, J,0) by assigning f; in Proposition 6.2
to each f in W. Clearly, T;(f) converges to f as ¢ goes to zero. It is
easy to see that T; is smooth. We want to examine the invertibility of
the differential of T; at any point in W. For simplicity, we do it at f,.

Lemma 6.8. Let m(u,z) be the parallel transport along the path
{ewpfm(z)(su(fm(w)))}05551. Then there is a uniform constant C > 0
such that

(6.82) [[vor — (tie s, - Jveflco < C\/Hllf — follooso)-

Proof. Choose a diffeomorphism ¢ from a neighborhood of fOt(Zt)
onto a neighborhood of f,(X,) satisfying: (1) ||¢p—1Id|jcs < C||fo—fllcs;
(2) for each node p in Xy, let U, 21, 22, and wy, - -+ ,w, be as in (6.2),
(6.6); then

fO(zlpazZp) = ¢_1 ) f(z1p7z2p) = (zlpazZpaOa teo aO) in Up-

If z in %, is far enough away from Sing(%,), then by the definition of
fo: and f;, we have

fil2) = F(@7(2), forl2) = fo(@7(2)),

where 9, is the diffeomorphism as in (6.10). Since both f and f, are
J-holomorphic, we have

v (2) = dfo + J - dfo - o = J - dfo - (B35 — Go®5)
and
v(2) = J -df - (@515 — 50®:0)-
It follows
[voe (2) — @7 ve(2))|
=|(J - dfo — ¢, T - df) (@5 — Jo®nH)I(2) < CIEF = foller

If z is in U, where p is a node of ¥, and U, is a small neighborhood
of p, then

¢'ft(21pazzp) = fm(zlp,zzp) = (zlp,zz,,,O,--- ,0),

implies

v = (¢ T by — Jo) - d(d7 - fi) - G-
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Since ¢~ - f is ¢! - J - P,-holomorphic, we have
¢t T B(215,0) = Jo = 677 - T - 6.(0, 22)-
We may assume that |z;,| > [2;,| at z. Then
¢ ve(2) = (67 - T - u (215, 229) — 95" - T - Bu(215,0)) - dfor - G-
On the other hand, we also have
v0:(2) = (J(21p, 23p) — I (21, 0)) - Aoz * .

Therefore, by the Mean-Value Theorem, we deduce

|’U0t(z) - ¢:1'Ut(z) e N
< sup [V(J = @7 - T - 6.)(21p, €22p) || 225l |d for | (2)

0<e<1

< C\/MHf — folleozo)-

Moreover, use of the definition of f; and fo, in (6.13) leads to

(6.83) llvor = &7 vellos < CY I = folloogsa)-

Hence the lemma, follows from (6.83), (6.68) and the fact that ||m; (@, ) ™'+

¢;' —1d[lcz < C|If = follco.
Let £; and £, be the sections in Proposition 6.2 such that T;(fo) =

expy, (L§,&1) and Ty(f) = exzpy, (L}€;). In consequence of the fact that
Ti(f), T:(fo) are J-holomorphic, we have

(6.84) 0 = vo; + Lo L3y (1) + Hoe(&1) f:TV),

(6.85) 0 = my(iirg,-) (ve + Lo L7 (&) + Hi(€2)) € A (foTV),

where vy, vy are defined in either (6.19) or (6.20). By Proposition 6.2,
we obtain [|61]l,3, [|€allz,3 < V/It], and therefore

13 —

(6.86) 1(ms(ies, -) Lo L} — LosLiymo(iieg, ) (&)lo.3 < CIEIIF = follco,
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and -

(6.87)  ||me(iies, ) Hel€2) — Hou(mu(dieg, Yellong < CVIENLS = folleo-
Substracting (6.84) from (6.85), yields

Te(Thef, -)0e — Vor
(6.88) = O, (& — ey, )&2) + Hoe(&1) — Hop(mo sy, -)&2) + B.

From (6.86) and (6.87) it follows that

(6.89) 1Bllo,3 < CItlI1f = follco-

Applying Lemma, 6.7 to (6.88) and using Lemma 6.8 and (6.89), we
deduce

1€ — me(dig, Yalla,y < Co/lel(=log [N EIIS — follo.

Therefore, the map T; is injective near f,. Moreover, if D;T; de-
notes the derivative of T; at f,, then for any u in Ker(L,), we have

(6.90) (1 —Clt)llulloo < [IDsTi(w)lloo < (L + Clel#)llulloo-

We denote by L, the linearization of the Cauchy-Riemann equation at
for. Note that Ly = L.

Lemma 6.9. Let Ker(f/t) be the set of all solutions for Ly = 0.
Then Ker(L,) converges uniformly to Ker(Lo) as t goes to zero. In par-
ticular, the dimension of Ker(f/t) stays as a constant for t sufficiently
small.

Proof. We just sketch a proof here. Let u;y,- <+ ,uy be an orthonor-
mal set of Ker(L;) with respect to the inner product induced by uls,,
ie., ,

/ (Uti,utj>dﬂ = 51‘;‘-
p
Since the Sobolev inequality holds uniformly for the metrics pls,, by
the standard iteration, one can show that (1) there is a uniform bound
on ||uglloe; (2) for any € > 0, there is a §; > 0 such that

sup{fui(21) — wi(@2)| [ o € By, ds(za, Sing(Xo))

(6.92) <dy, a=1,2} <e
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Therefore, by taking a subsequence if necessary, u,; converges to ug; on
3. Moreover,

/ (UOi,UoJ’)d# = 5ij,
Zo

i.e., {uy} form an orthonormal basis of a subspace in Ker(L,). Thus
the lemma follows from (6.90).

Corollary 6.2. The derivative DT, is an isomorphism between
Ker(Lo) and Ker(L,) satisfying (6.90).

Remark. The orientation of M4(Z, J,v;) at f; = T(f) is given
by the canonical orientation on the kernel Ker(dy,), provided that the
cokernel of 3y, is trivial, where 0, denotes the first derivative part of
fjt at fi, ie., fJ, - _3}, is an zero-order operator. Note that gft induces
a natural holomorphic structure on Ker d;,, which is isomorphic to
Ker(L,). Since J is generic, we may assume that the cokernel of 3, is
trivial for any ¢ small or zero. Then by using the same arguments in
the proof of Lemma, 6.10, one can show that the canonical orientation
on Ker(dy;,) is preserved when ¢ tends to zero. It follows that T is
orientation-preserving.

It remains to show (2) in Theorem 6.1. Let f’ be as given in Theo-
rem 6.1. For any f in W, let f, be T;(f). Then there is a unique vector
field u; such that

(6.93) (@) = ezps, o) (us (fil2))),

Furthermore, we have ||us{|o,o < €, where € is small and depends only
on W and ¢ in Theorem 6.1. ' We want to show f’ coincides with one of
fi in Proposition 6.2.

Lemma 6.10. Let p be the function in (6.15), and F be either f' or
one of fi. Then there is a uniform constant A < 1 such that

(6.94) |dF (% du, < 4\E.

/;% log |t|>~1log p>R
Consequently, for some uniform By > 0,

2 803
(6.95) (P2 (z) < Cpl(z)®.

Proof. Since F is J-holomorphic, (6.95) follows from (6.94) and the
standard elliptic estimates. Therefore, it suffices to show (6.94). We
will always use C to denote a uniform constant.
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Let wy, be the Kahler form of the J-invariant metric Ay on V. Then
|dF|ZC = F*whlgt.

Choose a cut-off function 7y such that ng(t) = L for ¢t > R+1, nr(t) =0
for ¢ < R, and |ng} < 1. By the assumptions on f’ in Theorem 6.1 or
construction of f;, for p(z) sufficiently small, the image F(z) lies in a
small coordinate chart, say a é-ball, of V. Therefore, we can deduce

/ (4P due < [ a(~log )P
—log p>R+1 P
<C [ [Van(~10g o)l dF . dv (F, 9)dc
+ [ nn(—1og p)|FT: dy (F, 5)dn.

e Bt + 6/ |dFI;2;¢dﬂc’

log p> R+1

R<~-logp<R+1

where ¢ is a point in V. By the well-known Poincaré inequatlity, we
can choose § such that

/ dv (F,9)%dpc < 4 AP de;
R<—log p<R+1 R<—-log p<R+1

for instance, we can take § to be the average of f, over the region
{z|R < —log p(z) < R+ 1}. Therefore, we have

/ |dF|; dp. < C |dF[2_dp.,
—log p> R+1 i R<—log p<R+1
and consequently, for A = c_iﬁ

/ @FEdue< [ AP dpe.
—log p> R+1 —log p>R

Hence the lemma follows from a standard iteration and the fact that
i, P2, dps. = wn(A).

Lemma 6.11. Ife, |t| are sufficiently small, then there is f in W
such that

(6.96) llusllo < Clel™,

where By is given in (6.95).
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Proof. By cutting ¥, along the loops in {z € Z|p(z) = /2[t[}
and gluing disks to the boundary components of the resulting surface,
we obtain finitely many surfaces ¥ (1 < ¢ < [). Putting ¥, to be
the disjoint union of those surfaces, we can naturally embed ;\{z €
To(x) = 2]} into T, as a submanifold. Then we can extend the
conformal structure j; on ¥; to be a natural conformal structure 4 on
3.

From Lemma, 6.10 It follows that

(6.97) |df'|,.. () < Clt™,

whenever 1/2[t] < p(z) < 104/[t|. Therefore, we can extend f’ to be a
map f from 3, into V satisfying:

(6.98) I3]0,z < C¢[*,

where & = df+J-df-j. We denote by L the linearization of the Cauchy-
Riemann equation at f, and by L* its adjoint. Then by the same
arguments as in the proof of Lemma 6.6, one can show that the first
eigenvalue of L,L* is not less than c(— log |t|)~2, where ¢ is independent
of f and ¢. Thus, by applying the Implicit Function Theorem (cf. the
proof of Proposition 6.2), we can find an £ in T'(A%! f*TV) such that

h = €TPf (L €) is J-holomorphic. Moreover, if ¢ is sufficiently small,
than we have

38
1€ll2,3 < CltI=

Clearly, it follows that the distance between Im(f’) and Im(f3) is less
than Cltl%n. The map f, may not be in M 4(Zo, J,0). However, using
(6.97) and the fact that M 4(Zo, J,0) is smooth at f;, one can show
that f, lies in a |¢|%-neighborhood of some f; in W, as long as both [¢|
and e are sufficiently small. Thus the lemma follows.

Let f; = T3(f) be given by Lemma 6.11. Without loss of generality,
we may assume that f = f,. Let £ be the unique solution: LtL*§ =
fltuf. Multiplying this equation by ¢ and integrating by parts, we
obtain

et

(6.99) / lifoIicdﬂcSC\/ |Leus |2, dpe
PN poN Z
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By the same argument as that in the proof of Lemma 6.6, one can show

(6.100) /E I

2 due < Clloglt)” [ \LiePdue

which together with (6.96) and (6.99) implies that for ¢ sufficiently
small,

B
(6.101) [ 16 due < C1E%.
Since L L1¢ = Lyu; = O(ljugll3 ), we have

Bi
lléll.,3 < ClEI7,
and consequently,
= Bi
lluy — Lyglly < ClE|Z

Now we want to find a new f; in W, which is very close to f = f,, such
that ug, = I~/{51 for some &;.

Using the equation f' = ezpy, (uy,) = exps(uy), we can define a map
S; from a neighborhood of f, into Ker(flt) at fo:

St(fl) = 7f(f0, fl)(uf. - i:fl), where flth, = f’tirgla

7(f1) denoting an isomorphism from the kernel of L, at f, onto that
at fy, which depends smoothly on f,. Clearly, S; is a smooth map. By
the same arguments as in the proof of (6.90), one can show

B
(L= CIt1F)|ulloo < 11DsSi(W)lloo < (1 + ClEI#)|lulloo-

Then by the Implicit Function Theorem, there is a f; such that S;(f,) =
0 and [jug, |,z < C[t[ﬂsl. For simplicity, we may assume that f; coin-

cides with f. Then u; = fl;“f . Since both f’ and f, are J-holomorphic,
from (6.65) it follows

(6.102) O:¢ = —H(§).

Multiplying (6.102) by ¢ and integrating by parts, one can deduce

(6.103) | \EePdue < CYEigloo [ 1P due
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However, IIL:El oo < C~'{t|£sﬂ, so for ¢ sufficiently small, (6.103) is im-
possible unless uy = Lf¢{ = 0, i.e., f' = f;,. Hence Theorem 6.1 is
proved.

7. Composition law

In this section, we prove the composition law for our mixed invari-
ants (Theorem A). A special case would be the composition law for
topological o-model invariants. The composition law was predicted by
physicists based on physical intuitions. Our proof will be based on
degenerating stable curves in the sense of Deligne-Mumford.

Let C = (3,21, -+ ,z;) be a k-point genus g stable curve, and
M 4(2, J,v) be the moduli space of all (J, v)-maps from ¥ into V' with
the total homology class A. By Corollary 4.11, for a generic (J,v),
M4(Z, J,v) is a smooth manifold, which may have many components.
Let X4,--- ,X,, be connected components of X, and A,,--- , A,, be ho-
mology classes with A = 37| A;. As before, Ma4,,... a,.)(3, J,v) be
those (J,v)-maps f with f,(X;) = A;. We will use this moduli space to
construct a generalizd invariant. The construction is exactly the same
as that of the mixed invariant in section 2. Let us outline this con-
struction as follows: Suppose that o,--- , 0, 51, -+, 5 are integral
homology classes satisfying

> (2n — deg () + Y_(2n — deg(8;) — 2)

7.1
( ) = dimM(Al,...,Am)(E, J, V).

They are represented by pseudo-manifolds (Y}, F;), (Z;,G;) as in sec-
tion 2. Let e, s,y and F be defined in (2.4), (2.5) with M4(Z, J,v)
replaced by M, ... 4,.)(E,J,v). Then we can define an invariant
@4y, Amwc) as follows: Fix a pair (J,v) such that ec s,y and
M4 (%, J,v) satisfy all properties described in Proposition 5.6. We
first associate a multiplicity m(f) to each f in e(_cl’ 7.9(8), and then
define m(f) to be zero if either f(z;) is not in F;(Y;) for some i, or
f(X) does not intersect one of G;(Z;). If f is as given in Proposi-
tions 5.1, 5.2, then there are finitely many (y,1,--- ,ys) (1 < s < m)
such that f(y,;) € G;(Z;) and each y,; is a smooth point of ¥. We
put €(f,s) to be *1; the sign is determined by the orientations of
M(A1,~-~,Am)(2>J7V) x (2)17 P: 1/1:+l at (f;ysla"' 7ysl)’ etc., and the
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Jacobians of the maps e(,j,) and F, where P is the domain of F.
Define

(7.2) m(f) = 3" e(f.s),

s=1

and finally,
(7-3) ‘I)(Al,---,Am,w,c)(ah o | By B) = Zm(f)-

For convenience, we simply define

(74) @(Al.'“ .Am,w,c)(ah T, O | 131, e 5131) = 03

in case (7.1) does not hold.

As before, one can show that this is independent of the choices of J,
v, the k-point, genus g curve C and the pseudo-manifold representatives
of Q;, /BJ

Remark 7.1. One can define a more refined invariant by speci-
fying components of ¥, which intersect with ;. Let g be a map from
{1,...,1} into {1,...,m}. Then we consider

€cyq: MA(C, J, I/) X qu(j) — Vk'H,
7, I
( 5) eC,q(flv"' vfm’yq(l)a"' )yq(l))

= (fo)(@1)s - - - » fory (@ )s Fay We))s 5 Fay Way))-

Choose a generic (J, v) such that ec , is transversal to . On the other
hand, L
Mayam)(E ) C | Ms(D,J,v).

DeDyy

H

By the same arguments in the proof of Proposition 2.2, one can show
that for a generic (J,v), ez, (Im(F)) does not intersect the boundary
of M4, 4,.)(Z,J,v). Therefore, one can define an invariant

@(Alr" VAm,w,C,q) (al’ Y 27 |1315 coc 7:31)

by counting points in ez (Im(F)) with sign. Moreover, if Q denotes
the set of all maps ¢, then

¢(A1,“' 1Am,w,C) (al, T 7ak|131a Tty :Bl)

(7.6) = Z D4y, AmwniCig) (@1, kB, -+ Br).
qeQ
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We can sum all ®4, ... 4,.w,) to obtain an invariant

(77) Q(A,w,C) = Z q)(Al,.A.’Am,w,c).

A=A +-An

Theorem 7.2 (the composition law). Suppose that (V,w) is a
semi-positive, symplectic, compact manifold and, C is a k-point genus
g stable curve. Then for any integral homology classes ay,--- , oy,
,Bla e 1ﬂl’ we have

(78) Q(A,w,y)(ah'"ak lﬂla"' 1:31) = Q(A,w,C)(ala"'ak |IBI)"' ’:Bl)-

Proof. Fix a degeneration n : § —+ A of k-point genus g smooth
stable curves, such that the central fiber is C, and other fibers are
smooth genus g Riemann surfaces with & marked points, where A
denotes the unit disk in C'. For example, in case ¢ = 0, we can
take S to be the blow-up of S? x A at a point in S? x {0}. Let
v be an inhomogeneous term on S (cf. section 3), whose restriction
on C is an inhomogeneous term y, on C (cf. section 4, paragraph
3). Let us use v, to denote vy, where X; denotes the fiber over t.
Let X; = (¢, -+ ,z.) be the k disjoint sections of S, whose restric-
tion to each fiber gives the marked points. Suppose that for ¢ # 0,
(fe¥ts-+- 5 91) is in efy, 5, ;5,0 (Im(F)), where F is defined in (2.5).
Then f;(z!) € Im(F;), fi(y:) € Im(G;). Using Proposition 3.1 and
taking a subsequence if necessary, we may assume that f; converges to
fo in M 4(Zo, J, 1) as t tends to 0. By Propositions 5.3, 5.4, if (J,vp)
is generic, than fo is actually in M4(Xo, J,10). Let 3?9 be the limit
of yi. Clearly, fo(z?) € Im(F;) and fo(3?) € Im(G;) # 0. Therefore,
(for 85+ 90) € €y 50,500y (I (F)). Thus the theorem follows from
Corollary 6.1.

Next, using an idea of Witten, i.e., decomposing the diagonal class by
the Kiineth formula, we shall prove that ®4,..c)(04, - o&|B1,--+ , Bi)
can be explicitly calculated in terms of the mixed invariant
of each component of C and contributions from double points.
There are two kinds of double points on a stable curve, i.e., intersection
of two different components or self-intersection of one component. We
shall give formulas for computing ®4 ) in two special cases corre-
sponding to these two types of intersections. The formula in general
case can be derived inductively from these two special cases.
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Case 1. Suppose that C = (3,1, -+ ,z) has exact two compo-
nents o;, Sg, of genus g,, g, satisfying: (1) X¢; and Iy, intersect at
a double point p; (2) Xy, carries m marked points z,- - ,Z,, and T,
carries the rest of marked points. Then ®4 ) can be calculated as
follows:

Let {H,} be a basis for the torsion free part of H.(V, Z). Consider
the diagonal A C V x V. By the Kinneth Formula, the homology class
of the diagonal is given by

A] = ZU’YTH’Y & H.,-,
YT
where 1,, = H,NH,, and {""} is the inverse of the intersection matrix
{7e}- Let g be the map: q(1) =--- = q(I') = 1, q(I'+1) = --- = q(I) =
2.
Theorem 7.3. Let Ay, A, be two homology classes. Then we have

D@ (41,42.0,C,9)

= ZUWJ‘I)(Al,W,gl)(ah' v aamaH'yl:Bh' ©r ’:31’)

v,6 :
'Q(Az,w,gz) (am+1> crry Oy H&';Bl’+17 e ,;Bl),

and consequently,

Q(A,w,g) (al,"‘,aklﬁla'”aﬁl) - Z ZZZ

A=A14+A42 j=0 o ~,0 ‘7

(79) 'q)(Al,u),gl)(alv Tt Oy H"r | :36(1)’ T 7;30(_7'))
'q)(Az,w,gz)(am+17 e ap, Hs | 130'(j+1)’ T ,;Ba(l))a

where o runs over all permutations of 1,--- ,1, and €(o) is the sign of
the permutation induced by o on odd dimensional f3;.

Proof. The invariant ®(4, 4;.w.c,q (01, - 0|B, -+ ,5) can be re-
defined as follows: Suppose that z € ,, 2’ € 3y, are the intersection
p. We define an evaluation map

€v : MA1 (2017 J7 Vl)x (Zgl)l’ X MAz (202’ J’ VQ) X (Zgz)l—l
(7'10) - Vk+l+2

’

to be
€c, X eCz(flayla"' ayl’f2ayl’+1a"' 7yl)
= (fl(ml)a' v afl(mm)afl(yl)v ,f1(y['),f1(Z),f2(ZI),f2(l'm+1),
: af2(mk)’f2(yl’+1)a"' ’f2(yl))'
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Let @ be a homology class in H,(V**2, Z) satisfying:
2n(k +1 +2) — deg(a)

(7.11) = dim M 4, (Zg1, J, 1) + dim M 4, (Zg2, J, 12) + 21

= 2C1(V)(41 + 4;) +2n(1 — (g1 + g2)) + 2n + 21,
For generic J, vy, Vs, by the same arguments in defining the mixed in-
variant, one can define an integral invariant ® 4, 4,(c) by counting the
number of elements in ev—! (Im(F)) with sign according to orientations
of the domain of ev, V¥*++2 etc., where F : Y — V*+*2 ig 3 pseudo-
manifold representing . This invariant ®4, 4,(a) is independent of
J,v1,vs, the complex structure of C, the pseudo-manifold representa-
tive F of a. Moreover, like the mixed invariants in Proposition 2.5,
®(4,,4,) is linear on a.

Now we take a to be the homology class

(712) 1 ® - ®am®B1 - - QF Q[A] Qg1 Q0 ®Byy1 -+ ® By

Suppose that F; : Y; = V, G, : Z; = V are pseudo-manifold represen-
tatives of «;, 8;. Then

F= HFXHG X A x HFxHG

m+1 I'+1
HYXHZ x V x HYXHZ — Ykt
m+1 I'+1

is a pseudo-manifold representative of a. Using the representative F,
one can eagily see

(713) (I)Al,Az (a) = q)(AhAz,w,C,q) (a17 Tty aklﬁl, e ’:Bl)’

On the other hand, applying the Kiineth formula to [A] as Witten
suggested in [25], we have

a = Zn75a1®. - ®Un®P; - QP OH, QHsQ0m 41 - ®®LBr 41 -+ OBy

7,6

Therefore,

P (41,45 (@)
= Z M°®4y,40) (01 @ ® o ® H,
7,0

®H5®am+1---®ak®ﬁz'+1“'®ﬁt)-
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But from the definition it follows trivially that

D401 ® R @B Py ® Hy® Hs ® Ctmys
Qo ® Py ®B)
= q)(Ahw,gl)(al,"' 7am=H'y|:31)"' 7:31’)
'q)(Azy%yz)(Héaam-b-ly' T 7ak|:3!’+17' " 7:31)'

This finishes the proof.

Remark 7.4. In case g; = go, there is another intepretation of
®(4,,4,,0,,9) in terms of the mixed invariant of U = V' x V' with sym-
plectic form = 7w + 7w, where 7; : U — V is the projection onto
the ¢*"-factor. More precisely, if ®(p g, denotes the mixed invariant
of (U,Q), where B=A4; ® 1+ 1Q® A,, then

Q(Al‘A2lwvc7Q) (al’ e ’ak|)
= @?B,Q,gl)(ﬂ-l_l (al)a e 77r1—1 (am)a "Té—l(am+1)’ U ’7r2—1(ak)7 Al)

Then one can use this to give another proof of Theorem 7.3 in this
special case.
Case 2. C = (%Xy,1, - ,Zx), and Xy is a genus-(g — 1) curve with
k marked points z,,--- , z; and a self-intersection point. Then we have
Theorem 7.5.

D(4,w,9) (Q1, -y alBry- -+, Br)
= ZUVJQ(A,w,g—l)(ala"' >ak7H'y’H6|131a"' 7:31)-

v,

Proof. The proof is similar to that of Theorem 7.3. Let z;, 2, be
distinguished points on the normalization ¥’ of Xy; i.e., &' is a genus-
(g — 1) curve, and there is a holomorphic map 7 : &' — X, such that
m(z1) = w(22) = p. Combining the marked points with distinguished
points, we can define an evaluation map

ev: Ma(X', Jv) x (Z')’ _y YhHF2
by
ev(f,y1, - ) = (Flm), -, flaw), Flz1), Fl22), Flwn), -+, Fw)-

In the same way as before, for any homology class a of V*++2 satisfy-
ing:
2n(k +1+2) — deg(a) = dim M4 (X', J,v) + 21,
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one can define an invariant ® 4(a) by counting the number of elements
in ev™!(Im(F)) with sign, where F : Y — V*+!+2 is 3 pseudo-manifold
representative of o. Moreover, one can show that ® 4(a) is independent
of the choices of J, v, complex structures of C as well as pseudo-manifold
representative F' of a. Let o = ®;04 ® [A] ®; B;. Using its pseudo-
manifold representative

| HEXAXHGJ*HKXVXHZJ-—>V’°+’+2,
i j i ;

one can show
Q4(0) = Baw,e)(®i; @ [A] ®; B;).
On the other hand, using the Kfineth formula as above, we deduce

a= Z’r]w ®¢ai®H7®H,; ®; ,Bj,
v,8

which implies

Ba(e) =) n"0a(i; ® H, ® Hs ®; ;)-

.8

Since
(I>A(®z'ai ®ny ® H6 ®j :6]) = (I>A,w,g—1(a17 Tt 7ak7nyaH6|:317 Ut aﬁl)?

the proof is complete.

8. The quantum cohomology ring

In this section, we will establish a quantum ring structure on the
cohomology of a semi-positive symplectic manifold. The key point is
the associativity. This will be proved by using the composition law
of last section and certain algebraic arguments in [25]. We will also
compute the quantum rings for some simple algebraic manifolds.

We put

(81) &)(A,w)(aly e ,ak) = ¢(A,w,0)(al7 O , )a
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where oy, -+ - , oy are integral homolgy classes. This is the Witten’s k-
point correlation function (cf. [19]), and depends on a homology class
A. We can also drop this dependence by summing contributions over
all possible A. So we can formally write the k-point function

(8'2) éu.)(aila DRI 7ak)(t) = Z é(A,w) (ala e ,ak) e_tw(A),
A

where t is a parameter. There may be infinitely many A which con-
tribute the summation in (8.2). Calabi-Yau 3-folds or CP? blow-up at
9-points are such examples. Therefore, there is a problem on the con-
vergence of the series in (8.2), which we will not address here. However,
for a symplectic manifold (V,w) with first Chern class C; (V') > cw for
some ¢ > 0, the Gromov-Uhlenbeck Compactness Theorem (cf. Propo-
sition 3.1) implies that there are only finitely many nonzero terms in
(8.2) for each fixed set of homology classes a;,- -+ , a;.

We define quantum multiplication by o* xg 8* for o*, 5* in H*(V, R)
by the condition that

(8.3) (@ xq B)(7) = Pule, B,7),

where cycles « , 3, v are the Poincaré duals of cocycles o*, 8*,v*.
Such a quantum multiplication is defined over the integer ring Z in
the following sense: if a*, §* are in H*(V, Z), then the evaluation of
a* xof* at t =0 lies in H*(V, Z). From Proposition 2.7 It follows that

(8.4) ot xg B = (_1)deg(a‘)deg(ﬁ‘)ﬁ* Xg o

It is also useful to write the quantum multiplication in terms of a
basis of H,(V, Z) as follows: Choose a basis {H,} of H,(V, Z) modulo
torsions. Let {n,,} be the intersection matrix associated with the basis,
ie., 1y, = HyN H,. Note that n,, = 0 if the degrees of H, and H, do
not sum up to the dimension of V. We define

(8~5) faﬁ”r(t) = q)w(HaaHﬁ,Hv)(t)
and
(8.6) a5(t) = 0" fap, (1),

where {n7°} is the inverse matrix of {n,,}.
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Let {H}} be the basis of H*(V, Z), which is dual to {H,}. Then the
quantum multiplication in terms of {H}} is given by

(8.7) | HixqHy=Y fl(t)H

which implies

(Hz xq Hy) xq H;(t) = Zf £)f2. (t)
oy (Z ff,ﬂ(t)f,;;(t)) H
4

[

(8.8)

Similarly,

(8.9) H; xq (Hy xq H}) (t) = Z (Z £3.() ) H:.

Therefore, as Witten observed in [25], the quantum multiplication is
associative if and only if the following equations hold:

(8.10) aa (05, (8) = f5,()f25(1).

Using (8.2), (8.5), (8.6), one can easily see that (8.10) is equivalent to
the following identities
(8.11)

Z Zngré(Al,w)(HayHB)‘H-T)é(Az,w)(Ha',H’yaH&)
A:A1+A2 a,T

= Z Zngré(Al,w)(HﬂaHwHT)&)(Az,w)(HaaHmHﬁ)?
A=A1+A; o1
where A, H,,Hg, H,, H; are given. By the symmetry of the Witten
invariants (cf. Proposition 2.7), we have

(812) é(l‘lz,u,')(‘[:l-om‘H.a';‘H-tS) = (_1)deg(Ha)deg(Hc)é(Az,w)(HaaHayH&)-

On the other hand, @(Az,w) (H,, H,, H;) is zero unless the sum of degrees
of H,, H, and Hj; is an even integer. Therefore, from (8.12) it follows
that (8.11) is the same as

Z Znaré(Ahw)(Ha,Hﬂ,Hr)é(Az,w)(HaﬁH’hHls)
A=A1+A2 0,7
= (_1)deg(Ha)(deg(Ha)+deg(Hs))

(8.13) x Y Zn“T@(AW)(Hﬂ,H7,HT)§>(A2,w)(Hg,Ha,H5).
A=A1+A; o7
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In the case of Calabi-Yau 3-folds, both sides of (8.13) are equal to zero,
so the quantum multiplication is automatically associative. In general,
(8.13) is not obvious. By the composition law in last section, the left
side of (8.13) is the same as (4 ., (H,, Hp, H,, Hs), while the right side
is equal to

(8.14) (—1)d6g(H°‘)(dEg(H“)-I-deg(H‘;))(i)(A’w)(Hﬂ,H,y,Ha, H;).

Thus (8.13) is a direct consequence of the symmetry of the 4-point func-
tion, and the invariant in (8.14) is zero unless degrees of Hg, H.,, H,, H;
sum up to an even integer. Therefore, we have

Theorem 8.1. The quantum multiplication is associalive; conse-
quently, there is a quantum ring structure on the cohomology of any
semi-positive symplectic manifold V.

From the composition law in last section it follows that

(8.15) Hj xq--xqH} = vaé(i)w(Ha“... ,Hea,, H,) () Hj.
¥,8

We should remark that both sides of (8.10) are infinite sum, whose
convergence in general remains to be checked. However, the above
equation is well posed as a sequence of equations involving only finite
sums.

We will call the cohomology H*(V, R) with the quantum multiplica-
tion the quantum cohomology of V', where V' is a semi-positive sym-
plectic manifold. By Proposition 2.6 we hence have

Proposition 8.2. The quantum cohomology of the product of two
semi-positive symplectic manifolds is the product of quantum cohomolo-
gies of the two manifolds. ,

We observe that the quantum product o X 8 does not preserve the
grading of the ordinary cup product. The quantum product may be
the sum of several cohomology classes of different degree. This can
be seen from (8.4). However, one can check that it always decreases
the degree by 2C;(V)(A) for some second homology class A, as long as
&, # 0. Assume that V is a compact symplectic manifold with positive
first Chern class C;(V). ILe., for any nonconstant J-holomorphic map
f: 2V, f*(Ci(V))(X) > 05 this is particularly true if C,(V) > cw
for some positive constant ¢. Let o*, 8* be any two cohomology classes,
and v be a homology class. Then

o xg (1) = ®u(a,8,7) #0
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only if
(8.16) deg(y) < deg(a®) + deg(8°),

where «, [ are the Poincaré duals of a*, B*. This is because
@ (4,w,0)(c, B,7) is nonzero only if

deg(a®) + deg(B*) + 2n — deg(y) = C1(V)(A4) + 2n > 2n.

If <i>( Aw0) (@ B,7) is nonzero, then there is at least J-holomorphic map
f from S? into V with f,(S?) = A. It follows that C;(V)(4) > 0, if A
is not the zero class. Consequently, in case the equality holds in (8.16),
we have

(817) o Xg IB*(’Y) = &)(O,w)(avﬂ77)

Hence we can deduce the following from Proposition 2.5,(5).
Proposition 8.3. Let V be a symplectic manifold with positive first
Chern class, and o*, 3* be two cohomology classes in H*(V,Z). Then

(8.18) aXgf=aUpB+ terms of lower degree .

As we mentioned before, there is a problem with the convergence of
the power series in (8.2), if (V,w) is no longer a symplectic manifold
with positive first Chern class, such as Calabi-Yau manifolds. It was
conjectured that the power series in (8.2) is convergent whenever ¢ is
sufficiently large. But we can use the Novikov ring to avoid this problem
of convergence. The use of the Novikov ring is extensively discussed
in [16]. Here we will only give a brief discussion on formulation of the
quantum cohomology ring in terms of the Novikov ring.

The symplectic form w induces a homomorphism, still denoted by
w, from H,(V,Z) into R. Fix such a homomorphism, we can define a
Novikov ring A, as follows: Each A € H,(V, Z) induces a homomor-
phism

(8.19) p(4) : HX(V,C/Z) = HX(V,C)/HX(V, Z) - C*
by p(4)(a) = e**vV-1e(4) Clearly, p(A; + 4,) = p(4;)p(4,). For

simplicity, we will denote p(A) by e2™V~14. Then the Novikov ring A,
consists of the Fourier series of the form

(8.20) A=AtV
A
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where A runs over all integral homology classes in Ho(V, Z), and the
coefficients A, satisfy

(8.21) {A| Mg #0,w(4) <c} < o0

for any ¢ > 0. If u = 3, 4e*™V~"4 be another element of A,, we
define the multiplication by

(8.22) Axp= Z Aap g2V HATA)
AA

It is straightforward to check that Axu satisfies the finiteness condition
(8.21). The Novikov ring also carries a natural grading defined by
deg(e?™V~14) = 2C,(V)(A). We will use A; to denote all elements of
degree j in A,. Note that if we choose a basis of H,(V, Z) and expand
e2™V=14 gyer this basis, we can write \ as a power series.

The quantum cohomology ring can be now defined to be

(8.23) Hy(V) = H*(V,R) ® A, = Hom(H, (V), A,).

This can be graded by

(8.24) @ Hom (H;(V), Ax_;).-

Now we define a new 3-point function

(8.25) (o, B, ) Z@A a, B,7)eX™V 4,

From the Gromov-Uhlenbeck compactness theorem it follows that
D, (a, B,7) € A,. Furthermore,

(8.26) deg(®, (o, ,7)) = 4n — deg(a) — deg(8) — deg(7)-

For any a*, 8* in H*(V, R), their quantum multiplication a* xg 3* is
defined by the condition

(827) (a* *Q IB*)(’Y) = &)Aw (a’ IB’ 7)7

where «, 3 are Poincaré duals of a*, 8*, and v is any homology class.
Then we extend this quantum multiplication to any two elements of
H}4 (V) by linearity.
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One advantage of this new definition is that the quantum multipli-
cation preserves the grading, i.e.,

(8.28) deg(a® #q B) = deg(a®)deg(8).

Again, the same argument as before will show

Theorem 8.4. The quantum multiplication a* xg B* is associative;
consequently, there is an associative quantum ring structure on the co-
homology HA(V) of any semi-positive symplectic manifold V' with co-
efficient ring A,.

Example 8.4. Let V be a K3-surface. It is well known that for a
generic complex structure on a K3-surface, there are no non-constant
holomorphic curves. Therefore &, = é(o,w), and consequently, the
quantum cohomology ring is the same as the ordinary cohomology ring.
In fact, the same is true for any hyperkahler manifolds.

Example 8.5. Let V be the complex projective space CP™ with
the Fubini-Study form w as its symplectic form. This is a semi-positive
symplectic manifold. Now let us compute the 3-point function of
CP". Note that for any three homology classes «, 3,7y, the sum of
their codimensions 6n — deg(a) — deg() — deg(y) < 6n. Let £ be
the generator of Hy(CP™,Z) represented by a complex line. Since
dim M 4 (S?, Jo,0) = 2d(n + 1) + 2n, where J; is the standard complex
structure on CP", only M4(S5?, J,0) for d = 0,1 will give any non-
trivial contributions to the 3-point function. In these cases, the moduli
space My (S?, Jy,0) is automatically compact and smooth, so we can
use it to calculate the 3-point function.

First we compute i)(g,w) (pt,pt, H), where H is a generic hyperplane in
CP™. Note that the moduli space M(S?, Jo,0) consists of holomorphic
maps from S? into CP" such that its image is a line in CP™. An
elementary fact about lines is that there is a unique line through any
two points in CP". Fixed two distinct points z;,z, in CP™ and a
hyperplane H not through z; and z,. Let L be the unique line passing
through z,, z,, and intersect H at z;. Fixed three points, say 0,1, 00 €
S?. By parametrizing this line properly, we can find a holomorphic
map f from S? onto L, such that f(0) = z;, f(1) = zs, f(0) = z3.
Such a f is unique since any element of PSL, is uniquely determined
by three points. Therefore, &)(z’w)(pt,pt, H) =1 and

&, (pt, pt, H)(t) = ™.
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We now compute the quantum cohomology ring of CP". Let z
be the Poincaré dual of H. Then z generates H*(CP™,Z). We will
use z* to denote the ordinary k**-power of z, and zf, to denote k**
quantum power of z. Note that C,(CP") = (n + 1)z. For k < n,

&)(O,w)(a:, -+-,z) is the only nonzero term in (8.15) with a; = z. Hence,
a:g = z*. Similarly, D) is the only term which contributes to the
quantum product :EgH. By counting degrees, one can easily show :L"é"'1

is of the degree zero, i.e., a:’é"'l is a number. This number is equal to

&)(g,w)(pt,H,pt) = e~t. Tt follows mg"'l = e~*. Higher powers of z can
be computed by this and the associativity. Therefore, the quantum
cohomology ring of CP™ is the quotient of the polynomial ring R[z] by
the ideal generated by z™+! — e~*.

Example 8.6. Let V be the surface obtained by blowing up
CP? at one point. Then H*(V, Z) is generated by z,y, where z is the
pull-back of a line in CP?, and y is the exceptional divisor from the
blowing-up. The relations are z2 + 32 = 0, xy = 0, i.e., the ordinary
ring is isomorphic to the quotient of R[z,y] by the ideal generated by
z? + y%, zy. Note that for simplicity, we will identify a cohomology
class with its Poincaré dual. We choose w to be the first Chern class
C1(V), which is positive. Then w(z) = 3 and w(y) = 1. There are two
homology classes 2y, z — y with C;(V)(2y) = C1(V)(z — y) = 2, two
classes 3y, z with C1(V)(z) = C1(V)(3y) = 3 and three classes A = 4y,
or 2(z —y), or z+y with C;(V)(A) = 4. For dimensional reasons, these
are only homology classes contributing to the 3-point function d,. Let
Jo be the complex structure on V, and J be a generic almost complex
structure near Jy. It is clear that M,,(S?, Jy,0) consists of only double-
branched covering maps onto y. Therefore, all maps in My, (S?, J,v)
have their image near the exceptional divisor g, where v is a small in-
homogeneous term. The expected dimension of M,,(S?,J,v) is 8. It
implies that &)(2y,w)(a, B,7) is zero unless one of the cycles, say «, has
its degree less than 2, so one can choose a pseudo-submanifold repre-
sentative of a which does not intersect y at all. If (J,v) is sufficiently
close to (Jo,0), the pseudo-submanifold does not intersect any (J,v)-
maps in M,,(S?,J,v). It follows that &)(2y,w)(a,ﬂ,7) is identically
zero. Similarly, M3,(S?, Jo,0), M4, (S?, Jp,0) and My,—4)(S?, Jp,0)
contain only multiple covering maps. Then one can show by the same
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arguments that

Payw) = Payw) = P@-yw) =0

We claim that the 3-point function ®(,+,.) = 0 as well. We observe
that M., ,(S?, Jo,0) = 0. But there are cusp curves of the form L + y,
where L is a line. The space of such cusp curves is of real dimension 8,
which is four less than the expected dimension of M,,(S?, Jp,0). So
the complex structure Jy is (z + y)-good and <i>(1.+y,w) =0.

On the other hand, the moduli spaces M, (52, Jy,0), M, _, (5%, J,0),
M, (S?,Jp,0) are all smooth and quite simple. More precisely,
My(52,J0,0)/PSLy = {y}, Ms_y(5?, Jo,0)/PSL; is the space of lines
in C P? passing through the blowing up point, and M, (S?, Jy,0) is the
space of lines of CP2%. It is not hard to compute contributions to the
3-point function from these moduli spaces. We summarize the results
as follows:

z = z° + e,
(8.29) Yo = ¥* + ey + e,
TXqy = TXy + e = e

It follows that the quantum cohomology ring of V' is the quotient of the
polynomial ring Rz, y] by an ideal generated by z* + y% — e~y — 2e 2%
and zy — e 2.

9. Mirror symmetry conjecture

The Mirror Symmetry Conjecture relates rational curves on an al-
gebraic manifold with the variation of Hodge structures of its mirror
manifold. An crucial step in solving this conjecture is to construct a
family of flat connections on H,(V,C) which deform the trivial con-
nection. These flat connections are different from the Gauss-Manin
connections, which come from the variation of Hodge structures. In
this section, we will use our mixed invariants and their composition
law to construct such a family of flat connection.

Let W = H*(V,Z) @ C = H*(V,C). As in last section, we choose a
basis {H,} of H*(V, Z) modulo torsions, and let {H}} be its dual basis
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of H*(V,Z). Any point w in W can be written as

L
(9.1) w=Y t;H
7=1

where L is the dimension of W. One can regard t;,--- ,f; as the
coordinates of w in W. We denote by w, the corresponding point
i, t;H; in H,(V,C).

By Proposition 2.5, the mixed invariant @4, ) is multilinear, so
we can extend $4, 4y to be a multilinear function on H.(V,C) in an
obvious way. Following E. Witten [25], we define a generating function

= 1

— —w(4) i
ww= Y ew ¥ L
(9.2) AEH(V,2) o
'Q(A,w,o) ('UJ*, W w*‘wl*’ ST, wm—3*)~
This function is a power series in t;, - -- , ;. We define a connection V.

for any number ¢ on the tangent bundle TW over W as follows: For
each tangent vector v = v“% in TW,

ov® ay v, 0
(93) Vv = az,[; (s—t; +6;7] W ) atadtg,
where {7°7} is the inverse of the intersection matrix associated with
the basis {H,} (cf. (8.5), (8.6)). Obviously, V, is the trivial connection
on W. The following is just Theorem C in the introduction.

Theorem 9.1. The connection V. is flat and a deformation of the
trivial flat connection on W.

Proof. The flateness of V, means

(9.4) V(Vev) =0

for any v in TW. Using the definition (9.3) of V., one can easily show
that for € # 0, (9.4) is equivalent to the so called WDVV equation

aB\IJw 83 \Ilw oT 83\Iju
(9.5) E n°" = 7 .
ot atﬁat ot,0t;0t, <= Ot,0t,0t, 0Otz0ts0t,
Both sides of (9.5) are power series in #;,--- ,t;,. We observe that there

is a canonical splitting of W, i.e., W = W_+W,,, where W, consists of all
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cohomology classes of even degrees, and W, consists of all cohomology
classes of odd degrees; consequently, any w in W is of the form w, +w,
and w, = Wes + Wy, Since the moduli space of (J,v)-maps is always
even-dimensional, we have

(I)(A,w,g) (wo*awe*awe* |weta Tt 7wet) = 0.
Thus from Proposition 2.7 it follows that

@(A,w,g)(w*,w*,w* | wey -+, w,)

9.6
( ) = @(A,w,y) (weta Wex, Wex |we*, e ,wet)-

Hence, the connection V. is flat on TW, and determined by its re-
striction to TW,. For simplicity, we may assume that W, = {0}. By
denoting ¥, by ¥, (¢1, -+ ,tL), we have the following expansion:

1

op Wb w=Rey S

m=31<a1, " ,am <L

'(I)(A,w,ﬂ) (HauHag; Hanga4 ot Ham) ta1 e tam-
Taking the third derivative on both sides of (9.7), we obtain
1

33—‘1’(t Ze—w(A)Z Z 2
Btodtgdt, m!

m=01<a1, ", am<L

.q)(A,w,O)(Ha,Hg, C,Iro[1 .. Ham)tm"'tam

(9.8)

Substituting the third derivatives of ¥, by the power series in (9.8)
and equaling the coefficients can easily show that (9.5) is equivalent to
(9.9)

> ZZZ A ]),n " ® (5 ,0,0) (Has Hpy Ho | Hayiry oo+ 5 Hoggz))

A=B1+B2 j=0 p o,7
“®(B3w,0)(Hy, Ho, Hr | Hog(g0yr s Hagy)

= Z ZZZ n(l_])'" " ®(By,w,0)(Ha, Hy, Ho | Hapyys 0+ Hay())

A=B1+Bz2 j=0 p o,7
“®(Byw,0)(Hps Hss Hr | Hapipays o s Hopyy)

for all a, B, v, 4, Il and A, where p runs over all permutations on
{1,---,1}. By the composition law in section 7 (cf. (1.1)), both sides
of (9.9) are equal to the mixed invariant

@(A,w,())(Haa Hﬁ’ H’Y’ Hb‘ ' Hal7 ot ’Hal)'
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Hence the theorem is proved.
Remark 9.2. (1) The generating function ¥, has a scaling prop-
erty: For any complex number s,

(R =Dsg L. oldeg(HE)-2)sy )
— e(zn_s)‘?\pw(tl, N ’tL)'

Which follows easily from (9.7) and the fact that
q)(A,w,O) (Hala Haza Haa ‘Hau Tty Ham)

(9’10) lIJw+201(V)

vanishes unless

> (deg(H, —2) = 2C1(V)(A) — 6.

i=1
Consequently, the connection V. admits a scaling property. In case V
has vanishing first Chern class, this scaling property makes TW into
a Hodge bundle. Note that V, preserves the inner product on TW by
the cup product.

(2) The function ¥, depends only on even degree cohomology classes,
as shown above. It is possible to modify the definition to include con-
tributions of odd degree cohomology classes. The simplest modification
is to replace — in (9.7) by e-g;%,}l, where €({e;}) is £ depending on the
induced ordering on odd degree cohomology classes in {H,} by {e;}.
Since such a genaralization is straightforward, we leave the details to
the readers.

We may assume that the basis {H,} is chosen, such that (1) there is
an L' < L, and deg(H,) is even or odd according to whether & < L' or
a > L'; (2) deg(H,) < deg(Hg) whenever a < 8 < L. In particular,
the degree of Hy: is 2n. We further assume that deg(H,) is 2n — 2 for
N<a<l[l.

Proposition 9.3. Let {H,} be chosen as above. Then we have
(9.11)

o'v :
= (tlautL)z(HamHﬂmH,y)+Z Z _
Bt.0t,01, 20 2l
L'-1
—w(A)+ Y taHA(A)
'Q(A‘w,ﬂ)(Ha7Hﬁ7H’ylHa1’"' 7Ham)ta1 R P a=N+1 ,

where (Hy, N Hz N H.,,) denotes the intersection number of H,, Hg, H.,,
and w* is the dual of w.
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Proof. If A = 0, by Proposition 2.5.(5), the invariant
D40 (Hy Hg, H)|Hy,,- -+, H,, ) is zero or (H,NHzN H,) according
to m > 0 or m = 0. Therefore, we obtain the first term in (9.11) from
the expression (9.7) of U,,,.

Now we assume that A # 0. If one of H,, is of the degree 2n, then

by Proposition 2.5.(3), we have
(I)(A,w,O)(Hou Hﬁa H’rIHoq PR aHozm) = 0.

Thus (9.11) follows from (9.7) and Proposition 2.5.(4).

Remark 9.4. There is also a problem on convergence of the
power series in defining ¥,,. In general, it is unknown if the series in
(9.7) is convergent for any t,,---ty, for instance, for Calabi-Yau man-
ifolds. In case V is a symplectic manifold with positive first Chern
class, one should be able to prove that the series in (9.11) is conver-
gent when |;],--- ,|tz/] are small and w is sufficiently large. This is
because the composition law in section 7 implies a recursion formula
for ®(aw,0)(Hoy, Hoyy Hoy|Ha, - -+, Hy,,) (cf. section 10). But we will
not discuss this convergence problem here.

Example 9.5. Let V be an irreducible complex surface with positive
first Chern class. Then V can be obtained by blowing up C'P? at generic
s points (s < 8). Choose a basis {H;}1<i<s+2 satisfying: H; is a point,
H, is the pull-back of a line on CP? and H; is an exceptional divisor
from the blowing-ups for each i between 3 and s + 1. On the other
hand, the first Chern class Cy(V) is 3H; — Y.3X3 H?, if there is a non-
constant holomorphic curve with homology class A = 3231 d;H;, then

3d2 — d3 —.e = ds+1 > 0. We will 1dent1fy A with (dg, st 5ds+1)~ Thus
1 2 2 2 2
Vot stsr2) = §(t1t5+z +tspalts — 83— —t514))
t3d2—d3—~--—ds+1—1
1
9.12 + Z ’Il(dz,--- 5ds+1)
O022) o (3, —ds — - —dyps — 1))
41
—w((dz2,,ds4+1))+data— 2 dit;
e =3 ,
where n(ds, -+ ,dsy1) denotes the number of rational curves in V' with
homology class (ds, - - - ,d,41) and through generic 3dy—d3—+ - -—dzyp1—1

points.
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In case V = CP?, this series is

1 n t3d—1
9.13 U, (t,ta, ts) = = (4182 + t5t2 A d(—w(Hz2)+ta)
( ) (1 2y 3) 2(13"‘ 32)+;(3d_1)'6 y

where n4 is the number of rational curves in C' P? of degree d.

Example 9.6. Let V be a Calabi-Yau 3-dimensional manifold.
Since C;(V) is zero, the “virtual” dimension of any moduli space
M4(S?, J,v) is 6. It follows that if A # 0, the invariant

q)(A,w,O)(Haa Hﬂ,H'y‘Hau' B Ham)

vanishes unless each H,, is a divisor.

We denote by n4 the number of J-holomorphic rational curves in V'
with homology class A. Then as Aspinwall and Morrison show heuris-
tically in [1], one expects

(9.14)  ®(aw0)(Ha,Hp, Hy) = Y mp(Ho N A)(Hg N A)(H, N A),
B|A

where B|A means that A is divisible by B, i.e., A = kB for some integer
k. Thus from (9.11) one can deduce

B,

(9.15) 81,0401,

(tl,"' ,tL) = (HaﬂHﬁﬂHq)

—w( A5t HA(A)
+ ) na(H,NA)HgNAYH,NA ; .
AZ#O A ( a )( B )( v ) 1— e_w(A)+Ei‘=N+1taH;(A)

It is still an open problem how to prove (9.15) rigorously, namely, carry
out mathematically the computation in [1] for the mixed invariants.
In particular, if V is a quintic hypersurface in CP*, we have

33\11“1 ng 43 e—dw(H2)+dt3
(916) ?{?(tlat27t3a t4) =95 + ; 1— e—dw(H2)+dt3 ?

where ng4 is the number of irreducible rational curves of degree d. Note
that n; = 2875 and n, = 609250. It is still an unsolved problem how
to compute all ny mathematically.
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10. An application to enumerative geometry

In this section, we give some applications of our main theorem to
some well-known problems in enumerative algebraic geometry.

Let V be an algebraic manifold, A be a homology class in Hy(V, Z),
and J be the complex structure of V. Then, M?* (52, J,0) is the moduli
space of non-multiple cover holomorphic maps f from S? to V such that
f+([S?]) = A. The linear group G = PGL, acts on M4(S5?,J,0) by
changing the parametrization. Then, the quotient of M?* (5% J,0)/G
is the moduli space of rational curves in V with fixed homology class
A. By the Riemann-Roch Theorem, the virtual complex dimension of
M3 (5?%,J,0)/G is C1(V)(A) +n—3, where n is the complex dimension
of V. Let us recall the definition of the counting function 4. We
will only define it under some nondegenerate conditions. Given generic
algebraic subvarieties Z;,--- , Z; (k > 3) satisfying

k
(9.1) S n—1—dimg Z; = Cy(V)(A) +n - 3.
i=1

If there are only finitely many rational curves in M%(S?,J,0)/G, which
intersect each Z; (i = 1,--- ,k) transversally at some smooth points,
each such a curve is a smooth point of M?%(S?,J,0)/G, and there is
no sequence of rational curves with homology A which converge to
a curve (possibly singular and reducible) intersecting all Z;, then we
can define 04(Z,---,Z;) to be the number of such rational curves
in M (S%,J,0)/G. In general, the function o4 has to be defined in
terms of the Euler class of certain “bundles”. Note that the number
04(Zy, -+ ,2Z) depends only on the homology classes of Z;,--- , Z;.

First we give some examples of algebraic manifolds which satisfy the
above nondegenerate conditions.

Lemma 10.1. If V is the Grassmannian manifold G(r,m) consist-
ing of all r-subspaces in C™, then the counting function o a(Z1,...,Z)
is well defined as above for Schubert cycles Z,,. .., Zy and equal to the
Gromov invariant 4 ,\([Z1],- - ,[Zk]) (c¢f. Proposition 2.4), where
[Z1),- -+ ,[Zk] are homology classes of Zy,- - , Z.

Proof. We just give a sketched proof for reader’s convenience, since
many arguments in the proof are the same as those in section 4. It is
well known that the tangent bundle TV = T'G(m,r) is semi-positive in
Nakano’s sense (cf. [6]), so (f*TV)* ® K is negative, where E* denotes
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the dual bundle of F, and K is the canonical bundle of CP!. From

the standard vanishing theorem it follows that the obstruction group

H'(CPY, f*TV), which is equal to H°(CP!,(f*TV)* ® K), vanishes.

It follows that AM%(S?, J,0) and hence M?* (52, J,0)/G are smooth.
Consider the evaluation map

ev : M*%(82,J,0) xg (CPY)* — V*
(f;xlf" awk) = (f(wl)a af(xk))

Let Z,,- -+ , Zi be generic algebraic smooth subvarieties in V. Since the
counting function o4, if exists, depends only on the homology classes
of Zy,-++,Zy, we may perturb Zy,---,Z; if necessary. It is easy to

show that the image Im(ev) is an irreducible open subvariety in V* of
dimension C; (V)(A4) +n+k—3. Let Im(ev) be the compactification of
Im(ev) under the Hausdorff topology, and Z be the subvariety [I~_, Z;
in V*. Then dimZ = Y% dim Z;.

If the boundary Im(ev)\ Im(ev) has complex Hausdorff dimension
less than C;(V)(A) +n+k ~ 3, then we can perturb Schubert cycles Z;
such that Z is away from Im(ev)\Im(ev), i.e., Im(ev) intersects Z in
V'* at finitely many points away from its boundary. On the other hand,
since each Z; can be deformed in any directions at a specified point, we
may perturb Z,---, Z, such that all intersections are transversal and

occur at smooth points of M%(S2,J,0)/G.

It remains to show that Im(ev)\ Im(ev) has complex Hausdorff di-
mension less than C;(V)(A) +n + k — 3. By the Gromov-Uhlenbeck
compactification theorem (Proposition 3.1), Im(ev)\ Im(ev) is the im-
age of

M (52,7,0)/G\ M4 (5%, J,0)/G

under the evaluation map. Therefore, it is enough to show that
M (82, J,0)/G\M* (5%, J,0)/G is of complex codimension 1. As we
show in section 4 (4.7), one way to prove this is to show that the evalu-
ation map set up in Theorem 4.7 is transverse to appropriate diagonal.
Then, the dimension acounting argument in Proposition 4.14 will im-
ply that M*%(S?,J,0)/G\M* (5%, J,0)/G is of complex codimension 1.
We proved this type of transverslity in Theorem 4.7 by perturbing the
almost complex structure. Here, we have to work on the fixed complex
structure. Therefore, we need a different proof. In the following, we
adopt notation in section 4.
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By Proposition 3.1, the limit of a sequence of M* (52, J,0) is either a
multiple curve or a cusp curve (cf. section 4.1). Only difference is that
the principal component, which is also a S?, satisfies a homogeneous
equation and should be treated as a bubble by dividing reparametriza-
tion group GG. If the principal component is a constant map, we just
collapse the principal component, and the resulting map is still a map
from a tree of S%. As we did in section 4, we drop the multiplicity of
a multiple map and consider its reduced map to its image. For the
set of cusp curves, we replace the component of multiple curves and
identify the consective components with the same image as we did in
section 4. Then the quotient space is the Gromov-Ulenbeck compacti-
fication M%(S?,J,0)/G. Note that the quotient of the set of multiple
cover curves is a union of M%(S?, J,0)/G such that there is an integer
m > 1 with A =mB. Since C;(A4) > 0, we have

dim(M3(82,J,0)/G) = CL(V)(B) +n — 3 < C1(V)(A4) + n — 3.

Hence it is enough to show that the set of cusp curves with more than
two components is of complex codimension 1. As we showed in the
section 4, we can decompose M?* (52, J,0)/G\M?%(S?,J,0)/G into the
union of Mg2(D, J,0) for D € ’Df"?sz. Here, we can suppose that D
has more than two components. Then, it is enough to show that
Ms2(D, J,0) is of complex codimension 1. Recall that Mg (D, J,0)
consists of J-holomorphic map f from Xp into G(r,m) such that every
component of f is a non-multiple ma,p,tthere is no consective bubbles
having the same image. Furthermore, the bubbles which have the same
image are sepecified by D. Here, we drop the last condition and de-
note the first two condition by D°. Suppose that the resulting moduli
space is Mg2(D°,J,0). Then, Mg2(D,J,0) C Mg2(D°,J,0), and it
is enough to show that Mgs2(D°,J,0) is of complex codimension 1.
Moreover, we can construct Nsz(D?, J,0) in the same way as we did
in section 4. Now we claim that Ng2(D°,J,0) is smooth for the stan-
dard complex structure J. Then it is easy to show that Ns:(D°, J,0)
is of codimension 1 by a dimension counting argument (cf. Proposition
4.14).
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Recall that the domain ¥po of maps in Mg2(D?, J,0) is a tree. We
can assign a level to each component, starting from zero level at princi-
pal component. For each intersection point z, among the components
intersecting at 2, there is a base component, which has the lowest level,
said k. Others are one level higher. In fact, one can imagine them as
several subtrees growing out of the base component at z. Therefore,
each of those non-base components is the base for a subtree, whose
components have the levels higher than k + 1.

- Now we order the intersection points z;,- - ,2;,. in such a way that

I(z1) 2 l(z3) > -+« 2 l(24,,, ), where I(z;) denotes the level of z;. For each
z;, suppose that B, By, ..., B;, are the components of D intersecting at
2;, where B is the base component. As we mentioned previously, each
B; is the base of a subtree, say Dp,. Let A; C V*it! be the diagonal
corresponding to the intersection pattern of D at z;, and Ap. = A X
Ay x -+ X Ay,,. Here, we suppose that the first factor of V*:t! is in
the image of e, and (i 4+ 1)-th factor is in the image of ep,, where eg,
ep, are evaluation maps from the moduli spaces of holomorphic maps
corresponding to B, B;. Let us write V%*! as Vg x V% to indicate
this order. Let u = (C(z),Ci(z1), -+ ,Cs.(zs;)) in A;, where C €
M%(S?,7,0),C; € Mp,(5%,J,0). Note that TVt 2 T A, @ T, V*,
i.e., we skip the factor V3. Since V = G(r,m) is homogeneous, given
(v1,---,vs;) € T,V*, we can find automorphisms ¢! of G(r,m) such
that p

¢} = Id, -(E( TR >¢i;)(“)|t=0 = (v1, ", Vs,)-
Now we use ¢! to move the whole subtree Dpg,. Recall that ep. is the
evaluation map from Mg2(D?, J,0) into a product of V. The derivative
of ep. is a vector of the form
(X,O,vl,---vs‘.,0,0,--- ’0)7

where X is a tangent vector of H;;ll Vjs"+1. Hence, we can prove
that ep. is transversal to Ap. by an induction on the level order of
21, , 2. Here we need to use the fact that there is no cycle in
the intersection pattern D°, in order to start the induction at the top
branch of each subtree. Then we finish the proof.

Remark 10.2. (1) It is possible to generalize this lemma to genus-
one curves in G(r, m) by using semi-positivity of the tangent bundle. It
is much more difficult to prove this in the case of higher genus curves.
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(2) An analog of Lemma 10.1 can be proved for complex homogeneous
manifolds with positive first Chern class by the same argument as in
the proof of Lemma 10.1.

In case V = CP", any A in H,(V,Z) is of the form d¢, where £
is a rational curve of degree one. We write M*%(S?,J,0)/G as My,
i.e., My is the moduli space of rational curves in CP™ of degree d.
We denote by W, (2 < 7 < n) the subvariety consisting of all those
curves in M, which intersect a fixed linear subspace in C'P™ of codi-
mension 7 > 1. In case d = 1, M, is the Grassmannian G(n + 1, 2),
and those W; are just the classical schubert cycles generating the ho-
mology ring of G(n + 1,2). It is a classical problem in enumerative
algebraic geometry to compute the intersection number W; N---NW,,
for 32(j: — 1) = (n + 1)d + n — 3. Clearly, this intersection number is
just the counting number o4 (H%,--- , H*), where we denote by H’ a
linear subspace in C'P" of codimension j. For simplicity, we denote this
intersection number by o, 4(j1,- - ,j%). One interesting special case is
On,d(2,2,--,2). It can be interpreted as follows: Given any degree
d algebraic curve C in CP™, its Chow coordinate X is a hypersur-
face in the Grassmannian manifold G(n — 1,n + 1) and consists of all
(n — 2)-subspaces in C'P™ which have nonempty intersection with C.
This Chow coordinate X is, unique up to multiplication by constants,
defined by a section in H*(G(n — 1,n + 1),0(d)), where O(1) is the
positive line bundle generating the Picard group of G(n—1,n+1). Let
N(n,d) + 1 be the dimension of H°(G(n—1,n+ 1), O(d)). Then there
is a subvariety in CPY(™% consisting of Chow coordinates of rational
(possibly singular) curves in CP™. We denote by ny the degree of this
subvariety. Then n, is just 0,4(2,2,---,2). Note that n; = 1. It has
been a difficult problem to compute n4 for higher degree.

The following is simply a corollary of Lemma 10.1 and Proposi-
tion 2.4. ‘

Corollary 10.3. Let V be CP™. Then we have

(10,2) Un,d(jl,"‘ J k) = @dg(Hjl,sz,Hj3|Hj4,--- ’Hjn)’

where £ denotes the homology class of the line in CP".

We will use composition law to derive a recursion formula for
On,d(j1,- -+ ,Jjr). Note that o, 4 is a symmetric function. For conve-
nience, we define o, 4(j1, - ,Jjx) to be zero if either some j; > n or
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Ef:l(ji —1) is not equal to (n+ 1)d +n — 3, which is the dimension of
M. We also allow some j; = 1. Clearly, we have

Gn,d(jla"' ,jk—la 1) = dan,d(jly"' 1jk—l)-

By using the symmetry, we may arrange j;,---,Jx to be a non-
increasing sequence, i.e., j; > j» > -+ - > ji. We also need to introduce
a partial ordering on the sequences of non-increasing integers I, 4 =
{41,792, e} such that 2< j;, <nand ¥ .5i =(n+1)d+n—-3+k.
Let I] ; = {7}, - ,jm} be another such a sequence. We say I, 4 < I, ,
if and only if there is an 4 such that j; = ji, -+ ,j; = j and ji41 < ji4,.
Clearly, the maximal element is of the form n,n,--- ,n,s, where s < n.

Theorem 10.4. Assume that j; > jo > --- > jp > 2. Then we have
the following formula:

Gn,d(jlaj2aj31j47"' ajk)
= ona(f1, 02 + 1,55 — L, a, -+, Jk)
+ d(an,d(jl +.73 - 17j27j47"' 7jk)

— Onald1 +J2,d3 — 1 j4, : ajk))
d—1 k-3

(10.3) + Zzzzl'k 3

di=11=0 o i=1
'(an,dl (jl:j3 - laz7.7rr(4)7 o 7.70'(1)) Od—d, (.721 n-— i)]rr(l+l)7 tt aja‘(k))
— On,dy (.711.727 zaja'(4)7 to aja'(l)) *O0d—d, (.73 - la n-— 2.1.7.0'(l+1)1 e 7jo(k)))-

Furthermore, there is a recursion formula for the intersection numbers
On,d-

Proof. This is a straightforward corollary of the associativity (9.9).
The associativity is proved by using two different degenerations of a
Riemann sphere with 4-marked points. For reader’s convenience, we
will apply Theorem A in case k = 4 to rederive (9.9) for CP™. First we
degenerate a Riemann sphere with 4-marked points to a union of two
smooth rational curves such that one component has marked points
Z,,Ts and another component has marked points z3,z,. Then, by
Theorem A,

d k-3

Dyp(H? , H”? , H* ' H |H*,.-. | H*) = Z ZZZ Ik —

d1=01=0 o i=1
. @dll(H]l,HJZ,H‘llH]a(al) . H"’“))
. Q(d—dl)e(Hja_l,H, H‘n—ilHja(l+l),. .. ’Hjcr(k)),



362 YONGBIN RUAN & GANG TIAN

where ¢ runs over all permutations of 4,.-- , k. Note that when 0 <
dy < d, all the terms involve only 0,1, ,0n,4-1- When dy = 0, we
get a term

Pyo(H ™, H, H**2|H, ... | H™*) = doy 4(j1 + Ja, 5 — 1, Jas 5 Jk)-
When d; = d, we get a term

Dug(H™, H? HP | H™ - - | H*) = 0y, a(j1, 52, Jas Jas -+ Jx)-
Hence,

@dg (Hjl,sz,Hja_l,HlHj4 . ij) = 0nd(j17j27j35j47 vt :jk)

+ dO’n,d(j1 +j27j3_1aj4’ ) ’Jk)+ZZle k 3_l)|

: . , =0 o i=1
"Ddlz(HJI,HJZ,H',HJG(‘i)’.. HJa(:))
.@(d_d,)e(Hjs—l,H, H”—ilHja(l+1]’ v HIow),

Notice that
y_g, (H?#™1, H, H"}|Hieusn) ...  His®)
= (d - dl) Gn,d—dl(j3 - 1,'71 — i)ja(l+1), e ’jv(k))o

On the other hand, we let the Riemann sphere with 4-marked points
degenerate to a union of two smooth rational curves with two marked
points z1, z; in one component and other two z,,z4 in another compo-
nent. By a similar argument as above, we can show

Dy (Hjl,HjZaHjs_laHlHj4a" ij)_-o'nd(jlaj2+1 Jz — 1,j47 ' 7jk)

+ d®g(H 571 H=2 H, ... H*) +Ezz Nk — 3 — 1!

] ; : =0 o i=1
@y (H?, HE ™! B HI .. HI20)
'@(d—dl)e(HJZ,H"—” HlHJo(Hl), v ,HJo(k)).

Therefore, we have

Un,d(jlaj2:j3aj4"" 7jk) = Un,d(jl’j2 + 1aj3 - laj47' T ajk)
+ d(an,d(jl +j3 -1 j2aj47 Tt 7jk) - Un,d(jl +j2aj3 - 1aj47' o ’jk))
d— 1 k— 3 n d dl

222 o

di=11=0 o i=1
(Un,d1 (.717.73 - 1, z,]a(4)) . 7JU(I))0d—d1 (j21 n— i,ja(l+1), e 7ja(k))
— On,dy (.71,.72, 1:3.70(4))' tt 7ja(l))od—d1 (.73 - 17'n - I’*:ja’(l+1)a e 7ja'(k)))-
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ObViOllSly, {j13j2,j3aj41"' ajk} < {.71 + j3 - 1)j27j47"' ’jk}a
{jl:jZ + 17j3 - 1,j47"' 7jk} and {]1 + j27j37j47"' 1jk}' Moreover,
if 51 = jo = n, then 51 + j» > n, jo +1 > n and j; + js — 1 > n; conse-
quently, on the right side of the above identity, all the terms involving

On,q vanish. Therefore, o, 4(j1,-- - , ji) can be expressed by a recursion
formula in terms of 0, 1, -+ , 0, g—1. This finishes the proof of Theorem
10.4.

Corollary 10.5. All the degree ng can be computed.
In the case n = 2, from Theorem 10.2 and easy computations it
follows that

1 > dydy(3ddydy — 2d + 6d,d5)(3d — 4)!

104 = -

( ) ng rrni (3d; — 1)}(3d, — 1)! Ng, N,
dy,dg>0

Since n; = 1, we deduce from this recursion formula that n, = 1,

ng = 12. Such a recursion formula of computing ng for CP? was first
derived by Kontsevich, using the composition law previously predicted
by physicists and now proved in our paper.

Recursion formulas for other manifolds. We can generalize the
above method to compute the Gromov invariants for Fano manifolds,
i.e., algebraic manifolds with positive first Chern class. Let V be a
Fano manifold. Recall that for any A in Hy(V, Z), the Gromov in-
variant @ 4(oy, a, - , ;) (k > 3) coincides with the mixed invariant
D 4(ay, a, as|ay, -+ ,04), where a; are homology classes of V. It is
non-trivial to derive the recursion formulas for computing the Gromov
invariants of a general Fano manifold because its cohomology group
could be very complicated. To illustrate the power of our composition
law, we compute the Gromov invariants of odd dimensional Fano man-
ifolds V, whose cohomology groups H*(V,Z) = Z. By the Lefschetz
Hyperplane Theorem, Fano hypersurfaces or Fano complete intersec-
tions are examples of such manifolds V. Without loss of generality,
we may assume that the dimension is not less than three. Let H be
the positive generator of H*(V,Z). Then H*(V,R) is generated by
H¢. Since Hy(V,Z) = Z, A is of the form d¢, where £ is the positive
generator of Hy(V, Z). We will simply write ®4 as ®,.

We would like to derive a recursion formula for ®4(H%,--- , H*),
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where .

> (i—1) =de(V)(0) +n—3.
i=1
As before, we will order j;,- -, j, in such a way that j; > --- > j,.
Let A be the diagonal in V x V. Then

[Al=p™ Y H'® H" '@ ) (odd degree) ® ( odd degree),
=0
where p is the degree of the manifold V), i.e., ppoint = H*. We will
apply the composition law for ®,(H?, H%z, H5*=Y H|H, -..  H*).
In case the degree of « is odd, we have for dimension reason

q)d(HiaHkialHj4"" 7ij) =0.

It follows that odd deg homology classes will not appear in the compo-
sition law of

&y (H? HP HB~L H|H*, ..., H*).

Suppose that ¢ is the intersection number of H and £. Then we have
the following formula

p(}d(Hjl"" 7ij) = Qd(Hjl’sz-HaHja_laHj“a"' sij)
+ dg (@d(Hj1+j3_1,Hj2,Hj4, - ,ij)
— @d(Hjl-i'jz Hja—l HJ'4 ij)
d—1 k-3 n (d d1

S DD D) Dy ey

di=11=0 o i=1
(10.5) ((bdl (Hh H2 Hz,HJa(«:)’ .. ,Hj"(’))
'(Dd—dl (Hja—l’ Hn-—i’ Hi-a+1) o ,Hj"("))
— @dl(Hjl,Hja_l,Hi,vaM), - ,Hja(l))
.(I)d__dl (sz, H""i, Hj"“'"l), e ,Hjcr(k))).

An analogous formula of (10.5) can be derived for any Fano manifolds,
but the formula will be much more complicated. Moreover, it is not
clear how to deduce from such a formula that the higher degree Gromov
invariants can be computed in terms of lower degree Gromov invariants.

When the tangent bundle of V' is not semi-positive, it is a difficult
problem to determine if the Gromov invariant is the same as the cor-
responding counting function in enumerative algebraic geometry. It is
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easy to see that they indeed coincide if the counting function is well-
defined in the sense described in the second paragraph of this section.
In general, the moduli space of rational curves may behave badly and
the counting function may not be well-defined. However, we propose

Conjecture 10.6. For a Fano manifold V, if C;(V)(A) >> 0, the
counting function o 4 is well-defined in the classical sense and coincides
with the Gromov invariant @ 4.

In general, one can compactify M?* (52, J,0)/G in the Hilbert scheme
by one-dimensional subschemes of V. Let us denote this compactifica-
tion by M3 (S?%,J,0)/ G and the Gromov-Ulenbeck compactification

GU
by M%(5%,J,0)/G . We are compelled to make the following conjec-
ture:
Conjecture 10.7. There is a continuous map from some nor-

malization of the Hilbert scheme compactification M?* (52, J, 0)/GH to

Gromov-Ulenbeck compactification M?*(S2, J,0) /F; Y whose restriction
on
M (S?,J,0)/G is identity map.

If this conjecture is true, one only has to check that M4 (5%, J,0)/G
has correct dimension. Then M%(S2, J, 0)/GGU\MZ‘4(SQ, J,0)/G is au-
tomatically of complex codimension 1 and one can solve the Conjec-
ture 10.6.

We also defined the Gromov invariants for higher genue curves in
section 2. The composition law in section 8 implies that these invariants
for higher genus curves can be computed in terms of the invariant
for rational curves. In case V is the Grassmannian manifold G(r,m),
our composition law gives rise to beautiful formulas, conjectured by
physicists Vafa and Intriligate, for computing these invariants, as shown
in [23]. The problem is to determine when the Gromov invariants are
enumerative geometric invariants. A partial answer to this was given
in [3]). In [3], they use a compactification in the Grothendieck Quot
Schemes, which depends on the sepecific feature of G(r,m). We also
refer the readers to paragraph 2, 3 in Remark 2.10 on counting higher
genus curves.
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Notes added in the proof:

The results of this paper were fist lectured by the second author in
the seminars at MIT and Harvard, early December, 1993. The full
paper was circulated in May, 1994. After we submitted our paper, we
received a book by D. Mcduff and D. Salamon in September, 1994 and
a preprint by G Liu in October, 1994. In these papers, the authors
gave a new proof of the formula (1.1) for monotone manifolds in the
case that g =0, k=4, [ =0.
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